• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Pirâmides

Pirâmides

Mensagempor marry » Qua Nov 09, 2011 07:43

Olá, pessoal!

Estou cursando Química e dando aulas de matemática, isto é: tendo que estudar demaaaaaaaaais.
Meu Ensino Médio foi precário e agora tenho que ralar muito pra aprender e ensinar bem, este é o meu propósito. Estou com muita dificuldade em resolver alguns exercícios sobre pirâmides, então vou postá-los aqui e se alguém puder me ajudar, ficarei muito agradecida.


1)Determine a altira de uma pirâmide cuja área da base é B dm². Sabe-se que a secção transversal desta pirâmide está a 8 dm da base e a sua área é 1/4 da área da base.

2)Uma secção paralela à base feita a 3 cm do vértice tem área igual a 1/3 da área da base. Qual a altura da pirâmides em cm ?

3)(PUC- SP) Uma pirâmide tem 10 dm² de base e 2 m de altura. A distância da base a que se deve tração um plano paralelo para que a secção seja 1/5 da base é?

Acredito que com estes três consigo fazer os outros 21 ( :-O ) e ensinar pros meus meninos da melhor forma possível.


Se precisarem de ajuda em Química, me mandem msg que se estiver ao meu alcance, ficarei muito feliz em poder ajudar.
marry
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Nov 09, 2011 07:17
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Química
Andamento: cursando

Re: Pirâmides

Mensagempor Adriano Tavares » Dom Jan 01, 2012 16:55

Olá,marry.

a)

Pirâmides.gif
Pirâmides.gif (3.17 KiB) Exibido 4520 vezes



Sendo a razão de áreas de figuras semelhantes igual ao quadrado razão de semelhança teremos:

b=\frac{B}{4}

\frac{\frac{B}{4}}{B}=(\frac{x}{x+8})^2 \Rightarrow \frac{1}{4}=(\frac{x}{x+8})^2 \Rightarrow \frac{x}{x+8}=\sqrt{\frac{1}{4}} \Rightarrow \frac{x}{x+8}=\frac{1}{2} \Rightarrow x=8 \tex{dm}

h=x+8 \Rightarrow h=8+8 \Rightarrow h=16 \tex{dm}

b)

\frac{\frac{B}{3}}{B}=(\frac{3}{h})^2 \Rightarrow \frac{1}{3}=\frac{9}{h^2} \Rightarrow h^2=27 \Rightarrow h=3\sqrt{3} \tex{cm}

C)

Pirâmides.gif
Pirâmides.gif (3.34 KiB) Exibido 4520 vezes



2m \Rightarrow 20 \tex{dm}

\frac{1}{5}=(\frac{x}{20})^2 \Rightarrow  \frac{1}{5}=\frac{x^2}{400 } \Rightarrow 5x^2=400 \Rightarrow x^2=80 \Rightarrow x=4\sqrt{5} \tex{dm}

d=20-x \Rightarrow d=20-4\sqrt{5} \Rightarrow d=4(5-\sqrt{5}) \tex{dm}
Adriano Tavares
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Seg Mar 07, 2011 16:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Tecnólogo em automação industrial
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D