• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Espacial + PG] Prismas

[Geometria Espacial + PG] Prismas

Mensagempor mayrahusein » Seg Out 17, 2011 16:38

Olá, sou nova por aqui e ando tendo muitas dúvidas com relação a geometria espacial. Tenho uma prova no dia 21/10 em que vai cair Progressão Geométrica, Prismas e Pirâmides, e eu não estou conseguindo resolver os exercícios. A primeira dúvida que quero enviar é de uma questão que envolve Prismas e Progressão Geométrica:

As medidas das três dimensões de um paralelepípedo retângulo estão em P.G. Sabendo que a área total e o volume deste paralelepípedo são, respectivamente, 112 cm² e 64 cm³, calcule as medidas das suas dimensões.

A resposta do gabarito é (2cm, 4 cm e 8cm), mas não consigo chegar nela!
Meus cálculos até agora:

a = xq
b = x
c = x/q

St = 2S1 + 2S2 + 2S3 V = Sb . h
St = 2(xq . x) + 2(x/q . x) + 2(x/q . xq) V = xq . x . x/q
St = 2x²q + 2x²/q + 2x² V = x³
112 = 2x²q + 2x²/q + 2x²
[112 = 2x²(q + 1/q + 1)] (:2)
56 = x²(q + 1/q + 1)

A partir daí dá tudo errado e não sei como continuar! Em que eu estou errando?
mayrahusein
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Out 17, 2011 16:16
Formação Escolar: ENSINO MÉDIO
Área/Curso: Segundo ano
Andamento: cursando

Re: [Geometria Espacial + PG] Prismas

Mensagempor Caroline Piccoli » Qui Nov 17, 2011 11:33

Adorei esse problema!!! Muito legal mesmo!!!
Minha resolução:

At= 112 cm²
V= 64 cm³

a1=xq= c
a2= x= l
a3= x/q= h

Descobrindo o valor de x pela fórmula do volume.

V= c.l.h
V= xq.x.x/q
V= x³
64=x³
x=4

Substituindo o valor de x na equação da area total (at)

at= 2xq.x/q + 2.x.x/q+ 2.x.xq
at= 2x²+ 2x²/q + 2x²q
112= 32 + 32/q+ 32q
80= 32/q+32q²/q
80q= 32+32q²
32q² - 80q+32=0

Resolvendo essa equação do segundo grau, obtemos como raízes: q1=2 e q2= 1/2

Substituindo o valor de x e os valores de q encontrados, temos:

a1=c= xq1= 4.2=8 ou a1=c=xq2= 4.1/2=2
a2=l= x= 4
a3= h= x/q1= 4/2=2 ou a3=h= x/q2= 4/1/2= 8

Portanto as dimensões são: 2cm, 4 cm e 8 cm.
Caroline Piccoli
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Nov 17, 2011 11:03
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59