• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Plano

Plano

Mensagempor Claudin » Sex Jul 06, 2012 12:32

Determine a equação do plano que contém o ponto P(1,1,1) e é perpendicular ao vetor (2,-1,8)

Temos o ponto e temos o vetor diretor, portanto a equação seria:

2x-y+8z = ?

O que eu não sei encontrar é a constante após o sinal de igualdade
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Plano

Mensagempor Russman » Sex Jul 06, 2012 16:00

Seja um palno que contenha um ponto P(x_{0},y_{0},z_{0}) de vetor normal \overrightarrow{N} = <n_{x},n_{y},n_{z}>.

Agora tome o ponto P=(x,y,z) que tambem pertence ao plano. Assim, o vetor \overrightarrow{PP_{0}}=<x-x_{0},y-y_{0},z-z_{0}> deve ser paralelo ao plano e, portanto, perpendicular a \overrightarrow{N}.

Logo,

\overrightarrow{N} \cdot \overrightarrow{PP_{0}}=0\Rightarrow <n_{x},n_{y},n_{z}> \cdot <x-x_{0},y-y_{0},z-z_{0}>=0,

e disto,

\Rightarrow n_{x}(x- x_{0})+n_{y}(y-y_{0})+n_{z}(z-z_{0})=0.

Se o plano é dado por ax+by+cz+d=0, então

\left\{\begin{matrix}
a=n_{x}\\ 
b=n_{y}\\ 
c=n_{z}\\ 
d=-n_{x}x_{0}-n_{y}y_{0}-n_{z}z_{0}\\ 

\end{matrix}\right.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Plano

Mensagempor Claudin » Sex Jul 06, 2012 16:23

:y:

obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.