• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Parábola

Parábola

Mensagempor Claudin » Qui Jul 05, 2012 19:52

Determine e identifique o lugar geométrico dos pontos equidistantes da reta y-7=0 e do ponto (3,2) e determine o vértice e a equação do eixo.

Gostaria de saber como iniciar esse exercício, em que tenho uma reta e um ponto.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parábola

Mensagempor Russman » Qui Jul 05, 2012 22:44

SUponha qe esse ponto é P=(a,b). Calcule a distancia do mesmo até o ponto e do mesmo até a reta. Em seguida, iguale as duas. Veja o que você obtem!
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Parábola

Mensagempor Claudin » Sex Jul 06, 2012 11:44

A distancia do ponto a reta deu

\frac{5\sqrt[]{13}}{13}
e depois o que fazer
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Parábola

Mensagempor Russman » Sex Jul 06, 2012 16:48

Russman escreveu:SUponha qe esse ponto é P=(a,b). Calcule a distancia do mesmo até o ponto e do mesmo até a reta. Em seguida, iguale as duas. Veja o que você obtem!


Distancia de (3,2) a P(x,y):

d_{1}^{2} = (x-3)^{2} + (y-2)^{2}

Distância entre a reta y-7=0 e P(x,y):

d_{2}=\frac{\left | y-7 \right |}{\left | 1 \right |}=\left | y-7 \right | \Rightarrow d_{2}^{2}=\left (y-7  \right )^{2}.

Agora, como d_{1} = d_{2}, então d_{1}^{2} = d_{2}^{2} e , logo,

(x-3)^{2} + (y-2)^{2} = \left (y-7  \right )^{2}.

Agora desenvolva, estude a função e determine o lugar geométrico, isto é, a superfície plana tal que satisfaz a condição do problema.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.