• Anúncio Global
    Respostas
    Exibições
    Última mensagem

COORDENADAS ESFÉRICA

COORDENADAS ESFÉRICA

Mensagempor ALEXSANDRO » Qua Jun 06, 2012 02:56

Questão:
A equação p=5cos\Theta é dada em coordenadas esfericas. Expresse a equação em coordenadas retangulares e identifique a superficie.

Resolução

{x}^{2}+{y}^{2}+{z}^{2}=5z
{x}^{2}+{y}^{2}+{z}^{2}-5z=0
{x}^{2}+{y}^{2}+({z}^{2}-5z+5)=5
{x}^{2}+{y}^{2}+({z-5/2)}^{2}=5

Seria uma esfera (0,0,5/2) com raio 5/2

Esta correto este desenvolvimento?

Alguem pode me ajudar, se possivel?
ALEXSANDRO
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Mar 29, 2012 04:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: COORDENADAS ESFÉRICA

Mensagempor LuizAquino » Qua Jun 06, 2012 09:40

ALEXSANDRO escreveu:Questão:
A equação p=5cos\Theta é dada em coordenadas esfericas. Expresse a equação em coordenadas retangulares e identifique a superficie.

Resolução

{x}^{2}+{y}^{2}+{z}^{2}=5z
{x}^{2}+{y}^{2}+{z}^{2}-5z=0
{x}^{2}+{y}^{2}+({z}^{2}-5z+5)=5
{x}^{2}+{y}^{2}+({z-5/2)}^{2}=5

Seria uma esfera (0,0,5/2) com raio 5/2

Esta correto este desenvolvimento?

Alguem pode me ajudar, se possivel?


Se você desenvolver o produto notável \left(z-\frac{5}{2}\right)^2 você obtém z^2 - 5z + 5 ?

Confira essa parte.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: COORDENADAS ESFÉRICA

Mensagempor ALEXSANDRO » Qua Jun 06, 2012 14:45

Ok, posso ter me passado ai.
Resolvendo o produto notavel não da isso, mas arrumando isso. o resultado está correto?
ALEXSANDRO
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Mar 29, 2012 04:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: COORDENADAS ESFÉRICA

Mensagempor LuizAquino » Qua Jun 06, 2012 19:44

ALEXSANDRO escreveu:Ok, posso ter me passado ai.
Resolvendo o produto notavel não da isso, mas arrumando isso. o resultado está correto?


Se você estiver considerando que \Theta é o ângulo formado em relação ao eixo z, então estará correto quando você arrumar a questão do produto notável.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.