• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Subespaço Vetorial] Polinômio

[Subespaço Vetorial] Polinômio

Mensagempor leandro_aur » Dom Mar 04, 2012 16:41

Galera, tenho uma dúvida aqui em um exercício que surgiu. A questão pede o seguinte:

Verifique se em cada um dos itens abaixo o subconjunto W é um subespaço vetorial do espaço vetorial V. Caso não sejam especificadas, as operações são as usuais.

Então galera, o ítem que não consegui provar é o seguinte:

V= {P}_{n}(R), W={p\in {P}_{n}(R) ; p(0)=p(1)}

Se fosse p(0)=0 eu poderia usar as demonstrações usuais, só que assim eu já não sei... Alguém pode dar uma ajuda? Valeu
leandro_aur
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Out 24, 2010 17:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia e Tecnologia
Andamento: cursando

Re: [Subespaço Vetorial] Polinômio

Mensagempor MarceloFantini » Dom Mar 04, 2012 17:04

Para provar que isto é subespaço basta mostrar que qualquer combinação linear de polinômios avaliados em zero terão a mesma avaliação quando avaliados em um. Veja:

(cf +g)(0) = (cf)(0) + g(0) = c(f(0)) + g(0) =

= c(f(1)) + g(1) = (cf)(1) + g(1) = (cf+g)(1).

Daí é subespaço. Veja que da segunda para a terceira igualdades eu apenas usei que se f e g pertencem ao espaço, sua avalição em zero é igual sua avalição em um.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Subespaço Vetorial] Polinômio

Mensagempor leandro_aur » Dom Mar 04, 2012 17:09

Entendi, então só fazer a demonstração comum e provar que se p(0)=p(1) portanto as demonstrações de existencia de subespaço para 0 são as mesmas que para 1.

Obrigado.
leandro_aur
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Out 24, 2010 17:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia e Tecnologia
Andamento: cursando

Re: [Subespaço Vetorial] Polinômio

Mensagempor MarceloFantini » Dom Mar 04, 2012 19:50

Não entendi a sua colocação. O que provamos foi que, se V = P_n(\mathbb{R}) então W = \{ p \in P_n(\mathbb{R}):  p(0) = p(1) \} é subespaço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: [Subespaço Vetorial] Polinômio

Mensagempor leandro_aur » Dom Mar 04, 2012 20:00

Isso que eu quis dizer, não me expressei bem, my mistake...
leandro_aur
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Dom Out 24, 2010 17:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia e Tecnologia
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}