por Andreza » Qua Nov 09, 2011 17:25
Considere, no plano cartesiano, a circunferência cujo centro está no ponto ( x?,0), em que x? > 0, de tal modo que o eixo das ordenadas seja tangente a esta circunferência. Considere agora a reta r de equação y= -x + x?. Quanto mede aproximadamente a área da região do plano limitada pela reta r, pelo eixo das ordenadas e pela circunferência?
Tem como fazer este exercício se ele nao passou o valor para x0? Disse q é maior q 0. Posso colocar qualquer número?
Obrigada.
-
Andreza
- Colaborador Voluntário

-
- Mensagens: 100
- Registrado em: Sáb Out 22, 2011 11:10
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Licenc. Plena Matemática
- Andamento: formado
por LuizAquino » Qua Nov 09, 2011 20:37
Andreza escreveu:Considere, no plano cartesiano, a circunferência cujo centro está no ponto ( x?,0), em que x? > 0, de tal modo que o eixo das ordenadas seja tangente a esta circunferência. Considere agora a reta r de equação y= -x + x?. Quanto mede aproximadamente a área da região do plano limitada pela reta r, pelo eixo das ordenadas e pela circunferência?
Andreza escreveu:Tem como fazer este exercício se ele nao passou o valor para x0?
Sim. Nesse caso, a resposta final ficará em função de x0.
Andreza escreveu:Disse q é maior q 0. Posso colocar qualquer número?
Não. Ao colocar um número você estaria resolvendo apenas um caso particular do exercício. A ideia é determinar a solução geral.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- cálculo de área
por rogerdbest » Qui Ago 05, 2010 17:02
- 1 Respostas
- 2046 Exibições
- Última mensagem por Molina

Qui Ago 05, 2010 18:01
Geometria Plana
-
- calculo de área
por angeloka » Sáb Nov 13, 2010 22:41
- 1 Respostas
- 1900 Exibições
- Última mensagem por MarceloFantini

Dom Nov 14, 2010 00:18
Cálculo: Limites, Derivadas e Integrais
-
- calculo de área
por angeloka » Dom Nov 14, 2010 17:49
- 2 Respostas
- 2242 Exibições
- Última mensagem por Moura

Ter Dez 14, 2010 08:05
Cálculo: Limites, Derivadas e Integrais
-
- calculo de área
por angeloka » Dom Nov 14, 2010 18:56
- 2 Respostas
- 2304 Exibições
- Última mensagem por Moura

Ter Dez 14, 2010 01:00
Cálculo: Limites, Derivadas e Integrais
-
- Calculo de area
por shantziu » Seg Set 05, 2011 16:57
- 1 Respostas
- 1410 Exibições
- Última mensagem por LuizAquino

Seg Set 05, 2011 21:49
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.