• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Vetores

Vetores

Mensagempor Claudin » Qua Nov 02, 2011 02:22

Considere o paralelepípedo que tem um dos vértices no ponto A = (2, 2, 4) e os três vértices adjacentes a A nos pontos B = (7, 0, 7), C= (-3, 4, 6) e D= (1, 1, 12).
a) Determine as coordenadas do vértice E oposto ao vértice A.

Teria que traçar os possíveis vetores? AB, AC, AD, BC?

O que seriam os vértices adjacentes a A? Seriam os demais vértices?

b)Calcule a área da face que contém os pontos A, B, C.

Seria o produto vetorial de AB e AC?

c) Calcule o volume do paralelepípedo.

Iria calcular utilizando o produto misto entre três vetores correto?


Alguém ajudaria esclarecendo essas dúvidas, mostrando o caminho a ser seguido e se possível uma prévia resolução, pois necessito de saber como resolver o exercício com urgência, pois minha prova é depois de amanha e ainda continuo com essa dúvida.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Vetores

Mensagempor LuizAquino » Dom Nov 06, 2011 16:31

Claudin escreveu:Considere o paralelepípedo que tem um dos vértices no ponto A = (2, 2, 4) e os três vértices adjacentes a A nos pontos B = (7, 0, 7), C= (-3, 4, 6) e D= (1, 1, 12).


A figura abaixo ilustra o paralelepípedo.

paralelepípedo.png
paralelepípedo.png (4.65 KiB) Exibido 525 vezes


Claudin escreveu:a) Determine as coordenadas do vértice E oposto ao vértice A.


Analisando a figura acima, note que:

E = A + \left(\vec{AB} + \vec{AC} +\vec{AD}\right)

O que seriam os vértices adjacentes a A? Seriam os demais vértices?

São os vértices vizinhos a A. Isto é, vértices que compartilham com A uma aresta.

Claudin escreveu:b)Calcule a área da face que contém os pontos A, B, C.
Seria o produto vetorial de AB e AC?


A área será dada pelo módulo do produto vetorial entre \vec{AB} e \vec{AC} . Isto é, deve-se calcular \left\Vert \vec{AB}\times\vec{AC}\right\Vert .

Claudin escreveu:c) Calcule o volume do paralelepípedo.

Iria calcular utilizando o produto misto entre três vetores correto?

Sim. No caso deve-se calcular: \left|\vec{AD}\cdot \left(\vec{AB}\times\vec{AC}\right)\right| .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}