• Anúncio Global
    Respostas
    Exibições
    Última mensagem

GA e Calculo Vetorial

GA e Calculo Vetorial

Mensagempor camposhj » Sex Out 07, 2011 00:41

Por gentileza, alguém poderia me ajudar com o exercício abaixo. Está valendo 30 pontos na faculdade.

Para o quadrado de vértices EFGH (onde: E(0,0), F(7,-5), G(2,-12) e H(-5,-7) ), prove que os lados adjacentes aos vértices estão em 90º e as diagonais são ortogonais entre si.
camposhj
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Set 20, 2011 21:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: GA e Calculo Vetorial

Mensagempor LuizAquino » Sex Out 07, 2011 11:12

O que você já tentou fazer? Onde está exatamente a sua dúvida?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: GA e Calculo Vetorial

Mensagempor camposhj » Sex Out 07, 2011 12:01

Prof. Luiz Aquino eu joguei os pontos no plano cartesiano e tracei o quadrado. Eu já usei a teoria de produto escalar, onde EF.FG = 0, achando o par odenado (-35,35) = 0. Fiz a mesma coisa com outro lado adjacente, onde FG.GH = 0, achando o par ordenado (35,-35) = 0. Com isso acredito eu, tá provado que os lados adjacentes aos vértices formam 90º.
Gostaria de saber o seguinte, quando eu traço as diagonais, ele formará 4 triangulos dentro deste quadrado.
Eu usei a teoria que a "soma dos angulos internos de um triangulo é 180º". Como os vertices do quadrado são ortogonais, dois desse angulos de um dos triangulos (divididos pela diagonal) possuem angulos de 45º cada um, portanto o outro angulo forma 90º.
Gostaria de saber se tem como provar usando Calculo Vetorial, e não por ângulos como eu disse.
Ou se pode ser assim mesmo?

Att.
Julio
Uberaba-MG
camposhj
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Ter Set 20, 2011 21:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: GA e Calculo Vetorial

Mensagempor LuizAquino » Sex Out 07, 2011 13:06

camposhj escreveu:Gostaria de saber se tem como provar usando Calculo Vetorial, e não por ângulos como eu disse.

Basta calcular o produto escalar entre os vetores que representam as diagonais do quadrado.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.