por santiago alves » Qua Abr 20, 2011 11:41
4-) Determinar o vetor x.(1, 4, -3)=7 e x(vetorial)(4, -2, 1)=(3, 5, -2).
Oi pessoal, to tentando resolver esse exercício mais não encontro saída em certo momento. Segundo a apostila o resultado é igual a (3, -1, 2).
eu fiz assim:
primeiro eu designei variáveis para os valores de x, ou seja, (a i, b j, c k)
o produto escalar do vetor x resultou em: (a +4b-3c)=7
e o produto vetorial: ((2c +b)i, (4c-a)j, (-2a-4b)k). depois eu coloquei esses valores em um sistema e é aonde surge o problema: 2c+b=3
4c-a=5
-4b-2a=-2
a solução que eu tentei foi somar esse sistema e para obter :(-3a-3b+6c)=6 e então relacionar com o produto escalar, ficou assim:
-3a-3b+6c=6
a +4b-3c=7
Já tentei fazer desta maneira e os valores das variáveis sempre resultam em zero.
Não tenho certeza se meu raciocínio chegou perto de estar certo....
Se poderem me ajudar... desde já agradeço!!!
-
santiago alves
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qua Abr 20, 2011 11:16
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por LuizAquino » Qua Abr 20, 2011 12:37
Esses são de fato o texto e o gabarito do exercício? Note que (3, -1, 2)*(1, 4, -3) = 3*1 + (-1)*4 + 2*(-3) = -7. Mas, no texto do exercício há a informação que (a, b, c)*(1, 4, -3) = 7.
De qualquer modo, para resolver o exercício você precisa determinar mais uma equação envolvendo a, b e c.
Para isso, aqui vai uma dica: se

, então

e

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Distância entre pontos (Geometria analítca)
por brunotorres101 » Qui Abr 09, 2015 22:44
- 0 Respostas
- 1638 Exibições
- Última mensagem por brunotorres101

Qui Abr 09, 2015 22:44
Geometria Analítica
-
- salario de paulo
por junior_gyn » Seg Abr 25, 2011 10:32
- 1 Respostas
- 1921 Exibições
- Última mensagem por Abelardo

Seg Abr 25, 2011 22:26
Desafios Médios
-
- paulo gomes da silva
por chicosilva88 » Ter Jul 01, 2014 15:55
- 0 Respostas
- 542 Exibições
- Última mensagem por chicosilva88

Ter Jul 01, 2014 15:55
Equações
-
- paulo gomes da silva
por chicosilva88 » Ter Jul 01, 2014 15:56
- 0 Respostas
- 531 Exibições
- Última mensagem por chicosilva88

Ter Jul 01, 2014 15:56
Equações
-
- paulo gomes da silva
por chicosilva88 » Ter Jul 01, 2014 16:49
- 0 Respostas
- 571 Exibições
- Última mensagem por chicosilva88

Ter Jul 01, 2014 16:49
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.