por Abner » Qui Mar 24, 2011 22:09
Um cone circular reto está inscrito em um cubo de aresta medindo 10 cm, de modo que
sua base está inscrita em uma das faces do cubo e seu vértice está na face oposta.
a) Calcule a medida da geratriz do cone.
b) Calcule a área da superfície lateral desse
cone.
c) Calcule também a razão entre o volume
do cone e o volume do cubo.
-
Abner
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Qua Jan 26, 2011 18:48
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Elcioschin » Qui Mar 24, 2011 22:34
Aresta do cubo ----> L = 10
Raio da base ----> 2R = L ----> 2R = 10 ---> R = 5
a) G² = L² + R² ----> G² = 10² + 5² ----> G = 5*\/5
b) Sl = (2*pi*R)*G/2 ----> Sl = 2*pi*5*5*\/5/2 ----> Sl = 25*\/5*pi
c) V = L³ ----> V = 10³ ----> V = 1000
v = (1/3)*(pi*R²)*L ----> v = 250*pi/3
v/V = 0,25*pi/3
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
por Abner » Sáb Mar 26, 2011 22:25
Obrigado só errei a B porque multipliquei pela altura tb.
-
Abner
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Qua Jan 26, 2011 18:48
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- cubo
por camilalindynha » Ter Dez 11, 2007 18:56
- 1 Respostas
- 6821 Exibições
- Última mensagem por admin

Ter Dez 11, 2007 20:05
Geometria Espacial
-
- Cubo (FEI - SP)
por Ananda » Qua Fev 27, 2008 16:05
- 3 Respostas
- 5125 Exibições
- Última mensagem por agp16

Dom Nov 08, 2009 21:42
Geometria Espacial
-
- Cubo
por Neperiano » Qui Fev 12, 2009 11:15
- 6 Respostas
- 3611 Exibições
- Última mensagem por Neperiano

Sex Fev 13, 2009 13:57
Geometria Espacial
-
- CUBO
por Thassya » Seg Out 11, 2010 21:46
- 9 Respostas
- 5277 Exibições
- Última mensagem por MarceloFantini

Qua Out 20, 2010 21:48
Geometria Plana
-
- Cubo
por Pri Ferreira » Qua Mar 21, 2012 14:17
- 1 Respostas
- 1645 Exibições
- Última mensagem por LuizAquino

Ter Mar 27, 2012 18:05
Geometria Espacial
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.