• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Analítica

Geometria Analítica

Mensagempor Ansso » Seg Out 18, 2010 22:22

Os pontos O = (0, 0), M= (raiz de 3, 1) , N e P = (0, p) são vértices consecutivos de um losango.
Sabendo-se que p > 0, pode-se concluir que o produto das coordenadas do ponto N é igual a
A)3 + raiz de 3 B) C) 6 D)6 + 2.raiz de 3 E) 12

Nessa questão ele da a figura do losango como no enuciado. So que quando vc desenha ele vai ter 2 coeficiente angular de tangencia 90°. O que faço com essa tangente? Utilizo ela como zero ou não existe mesmo?
Como resolver isso?

Obrigado pela Atenção!
Ansso
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Out 18, 2010 22:17
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: formado

Re: Geometria Analítica

Mensagempor MarceloFantini » Ter Out 19, 2010 17:40

Qual é a alternativa B?
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Geometria Analítica

Mensagempor Ansso » Ter Out 19, 2010 21:51

Ansso escreveu:Os pontos O = (0, 0), M= ( ?3, 1) , N e P = (0, p) são vértices consecutivos de um losango.
Sabendo-se que p > 0, pode-se concluir que o produto das coordenadas do ponto N é igual a
A)3 + ?3 B) 3?3 C) 6 D)6 + 2?3 E) 12

Nessa questão ele da a figura do losango como no enuciado. So que quando vc desenha ele vai ter 2 coeficiente angular de tangencia 90°. O que faço com essa tangente? Utilizo ela como zero ou não existe mesmo?
Como resolver isso?

Gabarito - B
Me confundir no gabarito Desculpem!
Obrigado pela Atenção!
Editado pela última vez por Ansso em Ter Out 19, 2010 22:16, em um total de 1 vez.
Ansso
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Out 18, 2010 22:17
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: formado

Re: Geometria Analítica

Mensagempor MarceloFantini » Ter Out 19, 2010 22:11

Lembre-se que as diagonais de um losango são perpendiculares. Usando esse fato, a diagonal \overline {MP} é perpendicular a diagonal \overline {ON}. Equação da reta suporte de MN: y = 2 - frac{1}{\sqrt{3}}x. Logo, a reta perpendicular e que passa por (0,0) é y = \sqrt{3} x. Agora, como um losango tem lados iguais: d(OP) = d(PN) = 2 \rightarrow  \sqrt{(x-0)^2 + (y-2)^2} = 2 \rightarrow (\frac{y}{\sqrt{3}})^2 + (y-2)^2= 4 \rightarrow \frac{y^2}{3} + (y-2)^2 = 4 \rightarrow y^2 + 3y^2 -12y +12 = 12 \rightarrow 4y^2 -12y = 0 \rightarrow y(y-3) = 0. Como nós queremos y \neq 0, sobra y=3, e portanto x= \sqrt{3}.

O produto xy = 3 \sqrt{3}, alternativa B.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Geometria Analítica

Mensagempor Ansso » Ter Out 19, 2010 22:35

Fantini escreveu:Lembre-se que as diagonais de um losango são perpendiculares. Usando esse fato, a diagonal \overline {MP} é perpendicular a diagonal \overline {ON}. Equação da reta suporte de MN: y = 2 - frac{1}{\sqrt{3}}x. Logo, a reta perpendicular e que passa por (0,0) é y = \sqrt{3} x. Agora, como um losango tem lados iguais: d(OP) = d(PN) = 2 \rightarrow  \sqrt{(x-0)^2 + (y-2)^2} = 2 \rightarrow (\frac{y}{\sqrt{3}})^2 + (y-2)^2= 4 \rightarrow \frac{y^2}{3} + (y-2)^2 = 4 \rightarrow y^2 + 3y^2 -12y +12 = 12 \rightarrow 4y^2 -12y = 0 \rightarrow y(y-3) = 0. Como nós queremos y \neq 0, sobra y=3, e portanto x= \sqrt{3}.

O produto xy = 3 \sqrt{3}, alternativa B.


Não entendi o que vc fez com o p do verticie P(0, p). Determinou algum valor? E essa parte "MN: y = 2 - frac{1}{\sqrt{3}}x", tbm não sei de onde vc tirou.
Vc me deu uma outra visão mas só não conseguir entender esses 2 probleminhas ai.
E na alternativa ali eu me confundir.
Obrigado por ter Respondido!
Ansso
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Out 18, 2010 22:17
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: formado

Re: Geometria Analítica

Mensagempor MarceloFantini » Ter Out 19, 2010 22:50

Um losango tem os quatro lados iguais, então a distância de O até M é igual a distãncia de O até P, resulta em p=2. Sobre a reta MN é só pegar calcular o coeficiente angular com os pontos e ver onde corta o eixo y (no caso, justo no ponto P, logo em y=2).
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Geometria Analítica

Mensagempor Ansso » Ter Out 19, 2010 23:04

É verdade, não tinha pensando nisso!!
Brigadão pela ajuda.
:-D
Ansso
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Seg Out 18, 2010 22:17
Formação Escolar: ENSINO MÉDIO
Área/Curso: Matemática
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}