• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Definir qual tipo de triângulo - Atividade com vetores.

Definir qual tipo de triângulo - Atividade com vetores.

Mensagempor Raphaelphtp » Qua Jan 11, 2017 20:38

Sendo um triângulo ABC com vértices A(2,3,1), B(2,1,-1) e C(2,2,-2), pode-se afirmar que o mesmo é um
triângulo?:
A.( ) Retângulo.
B.( ) n.d.a.
C.( ) Isósceles.
D.( ) Escaleno.

Plotei no winplot, mas mesmo assim não soube definir o tipo de triângulo.
Raphaelphtp
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Dez 20, 2016 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura Matemática
Andamento: formado

Re: Definir qual tipo de triângulo - Atividade com vetores.

Mensagempor adauto martins » Sex Jan 13, 2017 18:41

AB=\sqrt[]{(2-2)^{2}+(1-3)^{2}+(-1-1)^{2}}=\sqrt[]{4+4}=\sqrt[]{8}
AC=\sqrt[]{(2-2)^{2}+(2-3)^{2}+(-2-1)^{2}}=\sqrt[]{1+9}=\sqrt[]{10}
BC=\sqrt[]{(2-2)^{2}+(2-1)^{2}+(-2-(-1))^{2}}=\sqrt[]{1+1}=\sqrt[]{2}
bom as tres medidas diferentes...verificar se é retangulo,no caso verificar se cumpre o teorema de pitagoras...
tomemos o lado maior:
10={\sqrt[]{10}}^{2}={\sqrt[]{8}}^{2}+{\sqrt[]{2}}^{2}...,logo o triangulo é retangulo...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 675
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Definir qual tipo de triângulo - Atividade com vetores.

Mensagempor Raphaelphtp » Sex Jan 13, 2017 19:11

obrigado adauto, estou com outra dificuldade numa questão de vetor unitário, até já está postada, se puder ajudar... muito obrigado.
Raphaelphtp
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Dez 20, 2016 10:12
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura Matemática
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59