• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Geometria Analítica - Circunferência

Geometria Analítica - Circunferência

Mensagempor matheus_frs1 » Dom Mai 11, 2014 00:34

Determine o valor de m para que a circunferência de equação x²+y²-8x-my=-2 passe pelo ponto P=(8,-2).

Se vocês puderem não só jogar a resolução, mas me explicarem como devo fazer seria de uma grande ajuda.

Mt obrigado.
matheus_frs1
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Ter Mar 04, 2014 12:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Eletroeletrônica
Andamento: cursando

Re: Geometria Analítica - Circunferência

Mensagempor Russman » Dom Mai 11, 2014 01:19

.
Editado pela última vez por Russman em Dom Mai 11, 2014 01:21, em um total de 1 vez.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Geometria Analítica - Circunferência

Mensagempor Russman » Dom Mai 11, 2014 01:19

Dizer que uma função qualquer f(x) "passa pelo ponto" , por exemplo, (a,b) é o mesmo que dizer que f(a) = b. Isto é, se você calcular a função em x=a vai obter b.

Exemplo:

Determine m tal que y^2 + mx-1 = 0 passe pelo ponto (1,2).

A forma mais simples de solucionar este problema é substituir y=2 e x=1 em y^2 + mx-1 = 0 e obter uma equação em m. Veja:

2^2 +m.1-1=0
4+m-1=0
3+m=0
m=-3

Tente proceder da mesma forma para a circunferência. Você deve calcular, acho eu, m=-3 também! ( Feliz coincidência. hahah)
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Geometria Analítica - Circunferência

Mensagempor matheus_frs1 » Dom Mai 11, 2014 10:15

Ah, jura que é só isso, Russman? Eu pensei que teria que achar a equação reduzida da circunferência e achar os valores a partir daí. Dessa maneira a gente cai em uma simples equação de primeiro grau, e realmente m = -3.

Obrigado pela ajuda, e só uma outra pergunta... toda questão desse tipo (determinar o parâmetro m) eu posso usar o mesmo raciocínio?
matheus_frs1
Usuário Ativo
Usuário Ativo
 
Mensagens: 18
Registrado em: Ter Mar 04, 2014 12:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso Técnico em Eletroeletrônica
Andamento: cursando

Re: Geometria Analítica - Circunferência

Mensagempor Russman » Dom Mai 11, 2014 15:44

matheus_frs1 escreveu:Ah, jura que é só isso, Russman?


Acredito que seja. Foi a forma mais imediata que pensei.

matheus_frs1 escreveu:toda questão desse tipo (determinar o parâmetro m) eu posso usar o mesmo raciocínio?


Depende. Se for uma questão de "passar pelo ponto", na maioria das vezes é.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}