• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equações do Plano] Geometria Analitica

[Equações do Plano] Geometria Analitica

Mensagempor caique » Qui Abr 23, 2015 00:22

Favor ajudar com exercicio em anexo.

Att,
Anexos
avga.jpg
Exercicio
caique
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qui Abr 23, 2015 00:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencia da computacao
Andamento: cursando

Re: [Equações do Plano] Geometria Analitica

Mensagempor DanielFerreira » Qua Abr 29, 2015 20:10

Dada a equação \pi : \left\{\begin{matrix}x = 1 - \mu + 0\lambda \\ y = 2 + 2\mu + 0\lambda \\ z = 1 + 0\mu + \lambda \end{matrix}\right. tiramos dois vetores diretores, são eles: \vec{u} = (- 1, 2, 0) e \vec{v} = (0, 0, 1).

Calculemos o produto vetorial entre eles afim de encontrar o vetor normal...

\\ \vec{u} \wedge \vec{v} = \begin{vmatrix}
\vec{i} & \vec{j} & \vec{k} \\ 
- 1 & 2 & 0 \\ 
0 & 0 & 1 
\end{vmatrix} \\\\ \vec{u} \wedge \vec{v} = 2\vec{i} + \vec{j} = \\\\ \boxed{\vec{u} \wedge \vec{v} = (2, 1, 0)}

Daí, fazendo \mu = \lambda = 0 obtemos (1, 2, 1) que pertence à equação do plano.

\\ ax + by + cz + d = 0 \\ 2x + y + 0 + d = 0 \\ 2 \cdot 1 + 2 + d = 0 \\ \boxed{d = - 4}

Por fim, temos que a equação do plano é dada por \boxed{\boxed{2x + y - 4 = 0}}.
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.