• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicios geometria analitica

exercicios geometria analitica

Mensagempor gidelson araujo » Qua Jul 23, 2014 01:15

alguem pode me ajudar nestas questoes

Retas perpendiculares
1) Determine K para que as reta (r) x – 2py + 7 = 0 seja perpendicular a reta (s) -2px – y +1 = 0
2) Determine a equação da reta s que passa pelo ponto P é perpendicular a reta r, nos seguintes casos:
a) P(4, 3) e (r) 2x – 3y + 1 = 0
b) P(-2, 1) e (r) x – y + 4 = 0
c) P(0, 3 ) e (r) 2x + y -3 = 0
d) P(1, -1) e (r) x/3 + y/5 = 1

2 Determine o valor de p para que o ângulo RST seja de 45 graus, sabendo que R(2, 3), S(9, 4) e T(5, p)

4) determine a equação da reta r que passa pelo ponto P e é paralela a reta s que passa pelos pontos A e B:
a) P(1,4), A(2, 1) e b(0, -3) b) P(-1, 3), A(-3,2) e B(-1,-1) c) P(0, 0), A(2, 1) e B(4, 2)

Equação Geral da reta
1) Dada a reta r de equação 2x – y + 3 = 0 e os pontos A(-1, 1), B(0, 3), D(1, -3) e E(-3, 4), verifique quais desse pontos pertencem a reta r.
2)determine a área do triangulo definido pela origem e pelas intersecções da reta (r) 2x + 3y -6 = 0 com os eixos OX e OY.


se alguem puder ajudar em alguma dessasa equaçoes agradeço
gidelson araujo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Jul 23, 2014 00:59
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}