• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Geometria Analítica] - Encontrar o módulo de s.

[Geometria Analítica] - Encontrar o módulo de s.

Mensagempor Nicolas1Lane » Dom Mar 23, 2014 00:33

A questão quer que se encontre a partir de uma relação aonde o s=u+v+w sendo que u, v e w formam dois a dois ângulos de 60º e ainda que o módulo de u é 4, o de v é 3 e finalmente w igual a 1. Determinar então o módulo do vetor s. Que deve dar raiz de 35.

O que eu tentei até agora foi usar a relação de ângulo entre 2 vetores com ângulo teta 60º para pegar o resultado já que eu já tinha alguns módulos. Mas o modo como tenho os dados me deixaram incerto de como prosseguir corretamente.

s=u+v+w pensei em substituir nesta relação os módulos, mas não encontrei sentido nesta ideia e como não tenho vetor algum fica um pouco mais complicado.
Eu já estou tentando a tarde inteira nesta questão e nada do que resolvo fecha com a que supostamente deveria.
Será que poderiam me ajudar ao menos como trabalhar esta relação com o ângulo para eu fazer o resto. Estou simplesmente perdido já que o que tentei até agora não resultou no esperado.
Nicolas1Lane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Set 11, 2013 23:25
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Exatas/Ciência da Computação
Andamento: cursando

Re: [Geometria Analítica] - Encontrar o módulo de s.

Mensagempor Russman » Dom Mar 23, 2014 18:58

Basta você lembrar que

s= \left | \overrightarrow{s} \right | = \sqrt{\overrightarrow{s} \cdot\overrightarrow{s}}

Como \overrightarrow{s} = \overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}, então

\overrightarrow{s} \cdot\overrightarrow{s} = (\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w})(\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}) = \overrightarrow{u} \cdot\overrightarrow{u}+\overrightarrow{u} \cdot\overrightarrow{v}+\overrightarrow{u} \cdot\overrightarrow{w}+\overrightarrow{v} \cdot\overrightarrow{u}+\overrightarrow{v} \cdot\overrightarrow{v}+\overrightarrow{v} \cdot\overrightarrow{w}+\overrightarrow{w} \cdot\overrightarrow{u}+\overrightarrow{w} \cdot\overrightarrow{v}+\overrightarrow{w} \cdot\overrightarrow{w}

que simplifica-se-a ,dada configuração dos vetores,

s^2 = u^2+v^2+w^2 + \left 2(uv+uw+vw  \right )\cos 60^{\circ}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Geometria Analítica] - Encontrar o módulo de s.

Mensagempor Nicolas1Lane » Dom Mar 23, 2014 19:13

Muito obrigado mesmo.
Nicolas1Lane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Set 11, 2013 23:25
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Exatas/Ciência da Computação
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.