• Anúncio Global
    Respostas
    Exibições
    Última mensagem

GEOMETRIA ANALITICA - VETORES - ENGENHARIA

GEOMETRIA ANALITICA - VETORES - ENGENHARIA

Mensagempor engenheiroemduvida » Qua Fev 19, 2014 21:38

UM VETOR W DO R3 (ESPAÇO) FORMA COM OS EIXOS AX E AY,ÂNGULOS DE 60º E 120º RESPECTIVAMENTE,DETERMINE W(VETOR) PARA QUE ELE TENHA MODULO IGUAL A 2 *-) *-)

AJUDA!
engenheiroemduvida
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Fev 19, 2014 21:31
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Química
Andamento: cursando

Re: GEOMETRIA ANALITICA - VETORES - ENGENHARIA

Mensagempor Russman » Qui Fev 20, 2014 22:27

Todo vetor w \in \mathbbm{R}^3 pode ser escrito como

\overrightarrow{w} =  w ( \cos( \alpha_x)\widehat{i}   + \cos( \alpha_y) \widehat{j}   +\cos( \alpha_z) \widehat{k}  )

onde os "alphas" são os ângulos que cada componente forma com o respectivos eixos e w é o módulo do vetor.

Com os ângulos dados escrevemos então

\overrightarrow{w} =  w ( \frac{1}{2} \widehat{i}   - \frac{1}{2} \widehat{j}   + \cos(\alpha_z) \widehat{k}  )

Lembre-se que \overrightarrow{w} \cdot \overrightarrow{w} = w^2. Assim,

\frac{1}{4} + \frac{1}{4} + \cos^2(\alpha_z) = 1 \Rightarrow \cos^2(\alpha_z) = \frac{1}{2} \Rightarrow \cos(\alpha_z) = \pm \frac{1}{\sqrt{2}}

Se o módulo do mesmo tem de ser 2, então w=2 e , portanto,

\overrightarrow{w} =  \widehat{i}   -  \widehat{j}   \pm \sqrt{2}  \widehat{k}
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.