por renan_a » Qui Set 27, 2012 11:10
A ,B, C, D e E são vértices de um trapézio isósceles de bases AB e CD . Sabendo que: B(1,-1,2) , C(3,-2,3) e D (3,1,0) , Determine A: resp: a(1,0,1)

- Sem título.png (2.25 KiB) Exibido 2888 vezes
Tô quebrando a cabeça, mas tá difícil.
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por young_jedi » Qui Set 27, 2012 11:31
A reta AB é paralela a reta CD com isso, concluimos que elas tem o mesmo vetor direção
então encontrando o vetor direção de CD encontramos o da reta que passa por AB, substituindo o ponto B
encontramos a equação da reta AB.
Levando em consideração que a Distancia CB é igual a distancia AD utilizando a equação da reta encontrada da para achar o ponto A.
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por renan_a » Sex Set 28, 2012 10:43
Então, levando em consideração que AB//CD , CD(0,3,-3) , logo a reta que passa por A e B é:
r: (x,y,z,)= (1,-1,2) + t(0,3,-3) , correto?
Mas daí pra frente eu não consegui entender ao certo o que eu deveria fazer. Desculpe minha ignorância =)
Devo substituir qual ponto na reta, para encontrar o A?
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por renan_a » Sex Set 28, 2012 10:52
Acho que entendi o que tu quis dizer agora heheh... sendo o ponto P ( 1, -1+3t, 2-3t) , posso fazer que
PD=BC
DP( -2, -2-3t , 2 -3t)
BC( 2,-1,1)
(-2,-2-3t, 2-3t)= (2,-1,1)
Aí eu teria que fazer IDPI=IBCI
![\sqrt[2]{4 +4 +9t^2 + 12t +4 + 9t^2-12t}=\sqrt[2]{6} \sqrt[2]{4 +4 +9t^2 + 12t +4 + 9t^2-12t}=\sqrt[2]{6}](/latexrender/pictures/a6903085a483c58d9b9d067d2eed18c9.png)
Só que cortando a raiz dos dois lados, fica que
18t² +12 = 6
18t² = -6
t²= -1/3
só que não existe raiz quadrada de número negativo. =S
Fiz algo errado?
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
por young_jedi » Sex Set 28, 2012 13:33
amigo analisei seus calculos vi que quando voce calcula PD na coordenada y
seria -2+3t mais voce colocou -2-3t
-
young_jedi
- Colaborador Voluntário

-
- Mensagens: 1239
- Registrado em: Dom Set 09, 2012 10:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica - UEL
- Andamento: formado
por renan_a » Sáb Set 29, 2012 18:37
Agora consegui!
Seguinte: Tendo em mente que A( 1, -1-3t, 2+3t) e D(3,1,0)
O vetor AD( 2,2+3t, -2-3t) em módulo, tem que ser igual ao módulo de BC (2,-1,1)
![\sqrt[2]{2^2 + (2+3t)^2 + (-2-3t)^2} \sqrt[2]{2^2 + (2+3t)^2 + (-2-3t)^2}](/latexrender/pictures/6df0ff073c7fa9a00b7315448e2a9470.png)
=
![\sqrt[2]{2^2 + (-1)^2 + 1^2} \sqrt[2]{2^2 + (-1)^2 + 1^2}](/latexrender/pictures/91343d170c2d061c1f4eb13800818bfa.png)
elevando os quadrados e cortando as raízes, fica:
18t^2 + 24t + 6 = 0 (*1/6)
3t^2 + 4t + 1 = 0
t'= -1/3
Substituindo em A:
x= 1
y= -1 - 3*-1/3 = 0
z= 2 + 3*-1/3 = 1
logo , ponto A ( 1,0,1)
--------------------------------------------
Obrigado pela ajuda, young_jedi. Abraços
-
renan_a
- Usuário Dedicado

-
- Mensagens: 32
- Registrado em: Ter Set 25, 2012 08:39
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Mecânica
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Derivada através de Ponto Máximo - Otimização
por Suriano » Qua Mai 06, 2009 20:42
- 3 Respostas
- 6067 Exibições
- Última mensagem por Suriano

Qua Mai 13, 2009 21:39
Cálculo
-
- retas
por cristina » Qui Nov 26, 2009 01:01
- 1 Respostas
- 1479 Exibições
- Última mensagem por Neperiano

Sex Set 23, 2011 19:28
Geometria Analítica
-
- Retas
por Jaison Werner » Ter Abr 27, 2010 18:52
- 2 Respostas
- 1732 Exibições
- Última mensagem por Mathmatematica

Dom Jun 13, 2010 01:18
Geometria Analítica
-
- Retas
por manuoliveira » Qua Mai 23, 2012 16:28
- 1 Respostas
- 6786 Exibições
- Última mensagem por LuizAquino

Qua Mai 23, 2012 20:44
Geometria Analítica
-
- [Retas]
por dehcalegari » Seg Jun 24, 2013 17:57
- 2 Respostas
- 1399 Exibições
- Última mensagem por dehcalegari

Ter Jun 25, 2013 15:21
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.