por Mic_17 » Qua Ago 22, 2012 17:03
Por favor, preciso de ajuda com essa questão!!!
(Unifal-MG) Seja a circunferencia C de equação x^2+y^2+6raiz(3)x-6y+27=0. Determine a abscissa e a ordenada do ponto P de C que esteja o mais próximo possível da origem do sistema de coordenadas cartesianas.
Minha resolução:
* d(CO)=raiz((-3raiz(3))^2 + (3)^2 = raiz(9.3+9) = raiz(36) = d(CO)= 6 (distancia do centro C a origem O é 6.)
* Descobrir coeficiente angular da reta CO: m=y-yi/x-xi = 3-0/-3raiz(3)-0 = 3/-3raiz(3) = -raiz(3)
* equação reduzida da reta: y = mx -> y = -raiz(3)x
Daí eu tento substituir na equação da circunferencia mas o resultado não dá certo!!
A resposta é: xp=-3raiz(3)/2 e yp=3/2
-
Mic_17
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qua Ago 22, 2012 16:52
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 3ano
- Andamento: cursando
por Russman » Qua Ago 22, 2012 23:42
Suponhamos que o ponto

seja

. Assim, a distância desse ponto até o Origem é

.
Ainda, sabemos que esse ponto deve satisfazer a equação da circunferência

.
Assim, temos de solucionar o sistema

que é, na verdade, a busca do ponto de intersecção entre duas circunferências! Combinando as equações e tentando expressar uma equação em

na presença de

, temos, substituindo

na primeira( a apartir de agora simplificarei a notação para

e

.)

de onde chegamos em

.
Lembre-se que qeremos que esta equação tenha apenas 1 solução. Logo, o discriminante da mesma, o Delta, deve ser nulo. Fazendo isso, chega-se a equação em

.

a qual apresenta duas soluções possíveis:

ou

. Como qeremos a menor, tomamos

.
Se

a equação

se transforma em

a qual tem duas soluções iguais

.
Agora basta calcular

. De

temos

como resposta.
Logo o ponto é

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [circunferência] Questão de reta secante a circunferência
por danielleecb » Qui Jun 07, 2012 23:26
- 1 Respostas
- 1884 Exibições
- Última mensagem por MarceloFantini

Sex Jun 08, 2012 12:24
Geometria Analítica
-
- Circunferência
por ilovemat » Sex Abr 03, 2009 19:12
- 5 Respostas
- 9515 Exibições
- Última mensagem por Marcampucio

Seg Abr 06, 2009 20:11
Trigonometria
-
- circunferência
por jeffersonricardo » Seg Set 06, 2010 15:20
- 7 Respostas
- 4362 Exibições
- Última mensagem por MarceloFantini

Seg Set 06, 2010 17:14
Geometria Analítica
-
- circunferencia
por cosme » Qua Nov 17, 2010 09:29
- 2 Respostas
- 1833 Exibições
- Última mensagem por MarceloFantini

Qua Nov 17, 2010 15:11
Trigonometria
-
- Circunferência
por Pri Ferreira » Qua Nov 09, 2011 21:02
- 1 Respostas
- 1310 Exibições
- Última mensagem por LuizAquino

Qui Nov 10, 2011 20:29
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.