por hygorvv » Qua Jul 25, 2012 13:12
Olá galera, bom dia.
Obtenha equações do lugar geométrico dos pontos médios dos segmentos que se apoiam nas retas r e s e interprete geometricamente, no caso em que:
r: X=(1,2,2)+

(0,1,1) e s: X=(0,0,0)+

(1,0,1).
Resposta: 2x+2y-2z-1=0
Galera, interpretar geometricamente eu até consigo, não consigo é obter os pontos médios para tentar tirar alguma conclusão.
Agradeço desde já.
-
hygorvv
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Ter Jun 05, 2012 00:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por LuizAquino » Qua Jul 25, 2012 21:26
hygorvv escreveu:Obtenha equações do lugar geométrico dos pontos médios dos segmentos que se apoiam nas retas r e s e interprete geometricamente, no caso em que:
r: X=(1,2,2)+

(0,1,1) e s: X=(0,0,0)+

(1,0,1).
Resposta: 2x+2y-2z-1=0
Galera, interpretar geometricamente eu até consigo, não consigo é obter os pontos médios para tentar tirar alguma conclusão.
Cada segmento "se apoia" nas retas r e s. Em outras palavras, cada segmento tem um dos extremo na reta r e o outro na reta s.
Sejam P e Q os extremos de um segmento qualquer, de tal modo que P está em r e Q está em s.
Como P está em r, existe um escalar a tal que P = (1, 2, 2) + a(0, 1, 1). Por outro lado, como Q está em s, existe um escalar b tal que Q = (0, 0, 0) + b(1, 0, 1).
Desse modo, o ponto médio entre P e Q será dado por:

Agora tente continuar a partir daí.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por hygorvv » Qui Jul 26, 2012 13:47
MUITO obrigado LuizAquino.
Na verdade, você respondeu a questão né, deu a equação vetorial do plano, o que fiz foi encontrar a geral.
Obrigado.
-
hygorvv
- Usuário Ativo

-
- Mensagens: 23
- Registrado em: Ter Jun 05, 2012 00:47
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Lugar geometrico
por heldersmd » Sáb Set 15, 2012 12:35
- 1 Respostas
- 2285 Exibições
- Última mensagem por young_jedi

Sáb Set 15, 2012 13:46
Geometria Analítica
-
- LUGAR GEOMÉTRICO
por VALDERLEY » Sáb Mai 26, 2018 21:30
- 0 Respostas
- 3544 Exibições
- Última mensagem por VALDERLEY

Sáb Mai 26, 2018 21:30
Geometria Analítica
-
- LUGAR GEOMÉTRICO
por VALDERLEY » Sáb Mai 26, 2018 21:37
- 0 Respostas
- 2856 Exibições
- Última mensagem por VALDERLEY

Sáb Mai 26, 2018 21:37
Geometria Analítica
-
- Lugar Geométrico
por Danilo » Ter Jan 08, 2013 13:33
- 1 Respostas
- 1840 Exibições
- Última mensagem por young_jedi

Ter Jan 08, 2013 14:25
Geometria Analítica
-
- Lugar Geométrico
por nayarabarbosa » Ter Set 17, 2013 11:00
- 0 Respostas
- 1282 Exibições
- Última mensagem por nayarabarbosa

Ter Set 17, 2013 11:00
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.