por Danilo » Sáb Jun 09, 2012 22:40
Pessoal, não estou conseguindo chegar na solução de um exercício.
Determine a equação da reta s simétrica da reta (r) 2x+3y-7=0 em relação à bissetriz do 2º quadrante.
Bom, tentei fazer assim:
Primeiro encontrei a equação da reta que passa pela bissetriz do 2º quadrante (que eu chamo de t) que é x+y=0 (me corrijam se eu estiver errado). Aí dps eu encontrei a interseção desta reta com a reta r e encontrei R (-7,7). Depois encontrei um ponto P tal que este ponto pertence a reta r cujas coordenadas são (0,7/3), eu substitui x na equação de r por zero e e encontrei y=7/3. Por este ponto p tracei uma reta (reta esta q eu chamo de u) que é perpendicular à reta que passa pela bissetriz do segundo quadrante (t) . Como tenho a equação da reta de t e t é perpendicular a u, eu encontrei o coeficiente angular de u. E consequentemente a equação da reta de u porque o ponto P pertence a u e eu tenho o coeficiente angular. Sendo assim, eu encontrei a interseção entre u e t
M (7/6, -7/6). Como t está equidistante das retas r e s vou encontrar as coordenadas do ponto Q (que é o ponto que é a inteserção entre a reta s e a reta u) utilizando a formula do ponto medio XM = (XP+XQ/2) aí eu encontrei Q = (7/3,-7/6). O ponto R (-7,7) pertence à reta s, e Q (7/3,-7/6) aí, para concluir cheguei na equação da reta s... mas numa equação que não corresponde a resposta correta... tentei várias vezes e não sai por nada. Há algum raciocínio errado? (ou uma outra maneira de resolver :p) Agradeço a quem puder ajudar !
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Dom Jun 10, 2012 09:59
Danilo escreveu:Pessoal, não estou conseguindo chegar na solução de um exercício.
Determine a equação da reta s simétrica da reta (r) 2x+3y-7=0 em relação à bissetriz do 2º quadrante.
Bom, tentei fazer assim:
Primeiro encontrei a equação da reta que passa pela bissetriz do 2º quadrante (que eu chamo de t) que é x+y=0 (me corrijam se eu estiver errado). Aí dps eu encontrei a interseção desta reta com a reta r e encontrei R (-7,7). Depois encontrei um ponto P tal que este ponto pertence a reta r cujas coordenadas são (0,7/3), eu substitui x na equação de r por zero e e encontrei y=7/3. Por este ponto p tracei uma reta (reta esta q eu chamo de u) que é perpendicular à reta que passa pela bissetriz do segundo quadrante (t) . Como tenho a equação da reta de t e t é perpendicular a u, eu encontrei o coeficiente angular de u. E consequentemente a equação da reta de u porque o ponto P pertence a u e eu tenho o coeficiente angular. Sendo assim, eu encontrei a interseção entre u e t
M (7/6, -7/6). Como t está equidistante das retas r e s vou encontrar as coordenadas do ponto Q (que é o ponto que é a inteserção entre a reta s e a reta u) utilizando a formula do ponto medio XM = (XP+XQ/2) aí eu encontrei Q = (7/3,-7/6). O ponto R (-7,7) pertence à reta s, e Q (7/3,-7/6) aí, para concluir cheguei na equação da reta s... mas numa equação que não corresponde a resposta correta... tentei várias vezes e não sai por nada. Há algum raciocínio errado? (ou uma outra maneira de resolver :p) Agradeço a quem puder ajudar !
A interseção entre u e t é M = (-7/6, 7/6). Refaça as suas contas a partir daí.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Danilo » Dom Jun 10, 2012 16:25
Nossa, uma pequena desatenção. Deu certo aqui. Valeu !
-
Danilo
- Colaborador Voluntário

-
- Mensagens: 224
- Registrado em: Qui Mar 15, 2012 23:36
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Geometria Analítica
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dúvida {equação da reta}
por Danilo » Sex Jun 08, 2012 16:48
- 2 Respostas
- 2518 Exibições
- Última mensagem por Danilo

Dom Jun 10, 2012 00:02
Geometria Analítica
-
- [Dúvida reta e plano]
por Andresa_s » Qua Ago 01, 2012 13:02
- 1 Respostas
- 1509 Exibições
- Última mensagem por MarceloFantini

Qua Ago 01, 2012 21:07
Geometria Espacial
-
- EQUACAO DA RETA... DUVIDA EM QUESTOES
por jeovani » Seg Mai 16, 2011 17:37
- 2 Respostas
- 1895 Exibições
- Última mensagem por DanielRJ

Seg Mai 16, 2011 20:13
Geometria Analítica
-
- Dúvida em exercício - Equação da reta
por Danilo » Qui Mai 24, 2012 05:11
- 5 Respostas
- 3762 Exibições
- Última mensagem por Danilo

Sáb Mai 26, 2012 18:59
Geometria Analítica
-
- interseção,área e reta dúvida exercício
por igor44 » Seg Out 31, 2011 21:20
- 1 Respostas
- 2026 Exibições
- Última mensagem por procyon

Ter Nov 01, 2011 00:57
Geometria Analítica
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.