• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cálculo de Baricentro] com um vértice e um ponto médio

[Cálculo de Baricentro] com um vértice e um ponto médio

Mensagempor Matheus Lacombe O » Dom Mai 27, 2012 18:49

Cálculo de Baricentro com um vértice e um ponto médio

- Olá pessoal. Continuo resolvendo a minha antiga apostila positivo e heis que me surge outra dúvida.

- No enunciado deste problema tenho apenas dois pontos de um triangulo ABC. Sendo eles, um vértice A(2,5) e o ponto médio entre os vértices 'B' e 'C' - que chamei de P(5,-4). Com apenas estes dois dados o enunciado pede que seja calculado "[..]o ponto de intersecção das medianas do triângulo ABC.", ou seja, as coordenadas do baricentro

Tentativas:

- Bem, antes de mostrar os cálculos gostaria de expor o raciocíneo. Como não tenho os pontos 'B' e 'C' acho que é impossível calcular o baricentro pela fórmula abaixo:

G=\left( \frac{Xa + Xb + Xc}{3} , \frac{Ya + Yb + Yc}{3} \right)

- Portanto, tentei resolver usando a razão de 2/1, uma vez que o baricentro (G) divide as medianas na razão de dois para um.

Imagem

- Logo:

d(A,G) = 2.(d(P,G))

- Calculando a distancia AG


{d(A,G)}^{2}={(x-2)}^{2}+{(y-5)}^{2}

{d(A,G)}^{2}={x}^{2}-4x+4+{y}^{2}-10y+25

{d(A,G)}^{2}={x}^{2}-4x+{y}^{2}-10y+29


- Calculando a distancia PG:


{d(P,G)}^{2}={(x-5)}^{2}+{(y+4)}^{2}

{d(P,G)}^{2}={x}^{2}-10x+25+{y}^{2}+8y+16

{d(P,G)}^{2}={x}^{2}-10x+{y}^{2}+8y+41


- Se d(A,G) = 2.(d(P,G)), logo:


{x}^{2}-4x+{y}^{2}-10y+29 = 2. \left( {x}^{2}-10x+{y}^{2}+8y+41 \right)

{x}^{2}-4x+{y}^{2}-10y+29 = 2{x}^{2}-20x+2{y}^{2}+16y+82 \right)

{x}^{2}-16x+{y}^{2}-6y+53=0

- E agora? não chego a lugar algum!
Matheus Lacombe O
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 36
Registrado em: Sex Jun 03, 2011 22:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. Mecânica
Andamento: cursando

Re: [Cálculo de Baricentro] com um vértice e um ponto médio

Mensagempor DanielFerreira » Dom Mai 27, 2012 21:24

Matheus,
não garanto que meus cálculos estejam corretos. Fiz assim:
Considerando P o ponto médio de BC (supondo B à esquerda de P), digamos que o segmento BC = 2k, temos que:
B = (5 - k, - 4) e C = (5 + k, - 4)

Com isso:
G = \left(\frac{Xa + Xb + Xc}{3},\frac{Ya + Yb + Yc}{3} \right)

G = \left(\frac{2 + (5 - k) + (5 + k)}{3},\frac{5 - 4 - 4}{3} \right)

G = \left(\frac{12}{3},\frac{- 3}{3} \right)

G = (4, - 1)
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.