• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Retas

Retas

Mensagempor manuoliveira » Qua Mai 23, 2012 16:28

Calcular o valor de m para que as retas r e s sejam coplanares:
r: y = 2x + 3 e z = 3x - 1
s: (x-1)/2 = y/(-1) = z/m

Quem souber, por favor dê uma ajudinha... obrigada!!
manuoliveira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 61
Registrado em: Qui Abr 01, 2010 19:58
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Retas

Mensagempor LuizAquino » Qua Mai 23, 2012 20:44

manuoliveira escreveu:Calcular o valor de m para que as retas r e s sejam coplanares:
r: y = 2x + 3 e z = 3x - 1
s: (x-1)/2 = y/(-1) = z/m


Você precisa começar determinando os vetores diretores das retas.

Um vetor diretor de s é fácil perceber que é \vec{d_s} = (2,\,-1,\,m) .

Já para perceber o vetor diretor de r, vamos fazer x = t e montar as seguintes equações paramétricas:

r:\begin{cases}
x = t \\
y = 3 + 2t \\
z = -1 + 3t
\end{cases}

Desse modo, um vetor diretor para a reta r será \vec{d_r} = (1,\,2,\,3) .

Note que para qualquer valor de m, sempre os vetores \vec{d_r} e \vec{d_s} terão direções diferentes. Portanto, as retas r e s podem ser: reversas ou concorrentes.

Se elas forem reversas, então elas não são coplanares.

Mas se elas forem concorrentes, então elas serão complanares. Esse é o caso que nos interessa.

Ora, para que elas sejam concorrentes deve haver um ponto de interseção. Ou seja, deve existir um ponto P = (a, b, c) tal que:

\begin{cases}
b = 2a + 3 \\
c = 3a - 1 \\
\frac{a-1}{2} = \frac{b}{-1} = \frac{c}{m}
\end{cases}

Substituindo b e c na terceira equação, ficamos com:

\frac{a-1}{2} = \frac{2a+3}{-1} = \frac{3a-1}{m}

Considerando a primeira parte dessa equação, temos que:

\frac{a-1}{2} = \frac{2a+3}{-1} \implies a - 1 = -4a -6 \implies a = -1

Considerando agora a última parte dessa equação, já substituindo a = -1, temos que:

\frac{-2 + 3}{-1} = \frac{-3-1}{m} \implies m = 4

Portanto, para m = 4 teremos as retas r e s complanares e concorrentes, sendo que o ponto de interseção será P = (-1, 1, -4).
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: