• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CONVERTA DE COORDENADAS

CONVERTA DE COORDENADAS

Mensagempor ALEXSANDRO » Sáb Mar 31, 2012 14:42

Convertendo o ponto (-2,2) de coordenadas cartesianas retangulares para polares r>0 e 0\leq\Theta<2\pi.

Veja minha resolução:

r²=(x²+y²
logo r²=(-2)²+2²
r²=4+4
r=\sqrt[]{8}

OK, depois achei a tg:

tg\Theta=\frac{y}{x}
tg= \frac{2}{-2}
tg=-1
Como os pontos retangulares estão no 2 quadrante logo

Sendo assim o resultado da conversão de (-2,2) r>0 e 0\leq\Theta<2\pi). Correto minha resolução, se fazendo os graficos vejo que os pontos batem. Acredito estar correta.

(\sqrt[]{8},\frac{3\pi}{4})

Outra pergunta: Para estudar geometria analitica, qual livro seria um bom para estudar.


Abraços.
ALEXSANDRO
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Mar 29, 2012 04:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: CONVERTA DE COORDENADAS

Mensagempor LuizAquino » Ter Abr 03, 2012 12:27

ALEXSANDRO escreveu:Convertendo o ponto (-2,2) de coordenadas cartesianas retangulares para polares r>0 e 0\leq\Theta<2\pi.

Veja minha resolução:

r²=(x²+y²
logo r²=(-2)²+2²
r²=4+4
r=\sqrt[]{8}

OK, depois achei a tg:

tg\Theta=\frac{y}{x}
tg= \frac{2}{-2}
tg=-1
Como os pontos retangulares estão no 2 quadrante logo

Sendo assim o resultado da conversão de (-2,2) r>0 e 0\leq\Theta<2\pi). Correto minha resolução, se fazendo os graficos vejo que os pontos batem. Acredito estar correta.

(\sqrt[]{8},\frac{3\pi}{4})


O resultado da conversão está correta. Mas vale lembrar que tipicamente nós simplificamos a reposta ao máximo possível. O gabarito de um livro, por exemplo, apresentaria a resposta como: \left(2\sqrt{2},\, \frac{3\pi}{4}\right) .

ALEXSANDRO escreveu:Outra pergunta: Para estudar geometria analitica, qual livro seria um bom para estudar.


Qual livro é "bom" é algo relativo. O que pode ser bom para uma pessoa, pode não ser para outra. Mas para ter um ponto de partida, eu gostaria de recomendar os seguintes livros:

  • Boulos, Paulo; Camargo, Ivan. Geometria Analítica: um tratamento vetorial. 3a ed., São Paulo, Pearson Education, 2005.
  • Reis, Genésio Lima dos; Silva, Valdir Vilmar da. Geometria Analítica. LTC, 1996.
  • Santos, Reginaldo J.. Matrizes, Vetores e Geometria Analítica. Belo Horizonte, Imprensa Universitária da UFMG, 2007. (Disponível no endereço: http://www.mat.ufmg.br/~regi)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}