• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CONVERTA DE COORDENADAS

CONVERTA DE COORDENADAS

Mensagempor ALEXSANDRO » Sáb Mar 31, 2012 14:42

Convertendo o ponto (-2,2) de coordenadas cartesianas retangulares para polares r>0 e 0\leq\Theta<2\pi.

Veja minha resolução:

r²=(x²+y²
logo r²=(-2)²+2²
r²=4+4
r=\sqrt[]{8}

OK, depois achei a tg:

tg\Theta=\frac{y}{x}
tg= \frac{2}{-2}
tg=-1
Como os pontos retangulares estão no 2 quadrante logo

Sendo assim o resultado da conversão de (-2,2) r>0 e 0\leq\Theta<2\pi). Correto minha resolução, se fazendo os graficos vejo que os pontos batem. Acredito estar correta.

(\sqrt[]{8},\frac{3\pi}{4})

Outra pergunta: Para estudar geometria analitica, qual livro seria um bom para estudar.


Abraços.
ALEXSANDRO
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Mar 29, 2012 04:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia civil
Andamento: cursando

Re: CONVERTA DE COORDENADAS

Mensagempor LuizAquino » Ter Abr 03, 2012 12:27

ALEXSANDRO escreveu:Convertendo o ponto (-2,2) de coordenadas cartesianas retangulares para polares r>0 e 0\leq\Theta<2\pi.

Veja minha resolução:

r²=(x²+y²
logo r²=(-2)²+2²
r²=4+4
r=\sqrt[]{8}

OK, depois achei a tg:

tg\Theta=\frac{y}{x}
tg= \frac{2}{-2}
tg=-1
Como os pontos retangulares estão no 2 quadrante logo

Sendo assim o resultado da conversão de (-2,2) r>0 e 0\leq\Theta<2\pi). Correto minha resolução, se fazendo os graficos vejo que os pontos batem. Acredito estar correta.

(\sqrt[]{8},\frac{3\pi}{4})


O resultado da conversão está correta. Mas vale lembrar que tipicamente nós simplificamos a reposta ao máximo possível. O gabarito de um livro, por exemplo, apresentaria a resposta como: \left(2\sqrt{2},\, \frac{3\pi}{4}\right) .

ALEXSANDRO escreveu:Outra pergunta: Para estudar geometria analitica, qual livro seria um bom para estudar.


Qual livro é "bom" é algo relativo. O que pode ser bom para uma pessoa, pode não ser para outra. Mas para ter um ponto de partida, eu gostaria de recomendar os seguintes livros:

  • Boulos, Paulo; Camargo, Ivan. Geometria Analítica: um tratamento vetorial. 3a ed., São Paulo, Pearson Education, 2005.
  • Reis, Genésio Lima dos; Silva, Valdir Vilmar da. Geometria Analítica. LTC, 1996.
  • Santos, Reginaldo J.. Matrizes, Vetores e Geometria Analítica. Belo Horizonte, Imprensa Universitária da UFMG, 2007. (Disponível no endereço: http://www.mat.ufmg.br/~regi)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}