• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Circunferência

Circunferência

Mensagempor Pri Ferreira » Qua Mar 21, 2012 14:38

Por favor!!Gostaria mt de ver a resolução!!Urgente!!
Uma circunferência de centro (a; b) e raio r passa pelos
pontos A(0; 2), B(0; -2) e C(1; 0). O valor de (a + b) é:
a) - 1/2
b) - 3/2
c) - 5/2
d) - 7/2
Pri Ferreira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 59
Registrado em: Qua Out 19, 2011 20:53
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática
Andamento: formado

Re: Circunferência

Mensagempor LuizAquino » Sex Mar 23, 2012 11:17

Pri Ferreira escreveu:Uma circunferência de centro (a; b) e raio r passa pelos
pontos A(0; 2), B(0; -2) e C(1; 0). O valor de (a + b) é:
a) - 1/2
b) - 3/2
c) - 5/2
d) - 7/2


Pri Ferreira escreveu:Por favor!! Gostaria mt de ver a resolução!!


A equação da circunferência terá o seguinte formato:

(x - a)^2 + (y - b)^2 = r^2

Substituindo os três pontos dados no exercício, você obtém um sistema com três equações e três incógnitas:

\begin{cases}
a^2 + (2 - b)^2 = r^2 \\
a^2 + (-2 - b)^2 = r^2 \\
(1 - a)^2 + b^2 = r^2
\end{cases}

Resolvendo esse sistema, você pode determinar os valores de a e b. A partir disso, basta calcular a + b.

Agora tente terminar o exercício.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}