• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Reta distancia ponto

Reta distancia ponto

Mensagempor felipe grion » Seg Fev 20, 2012 10:41

Determine Ya em função de x para que o ponto A = (Xa,Ya) esteja sobre a reta r: x - 7y + 25 = 0. Determine agora as possibilidades para o ponto A de modo que, alem de estar na reta r, sua distancia a origem seja 5.

Não consegui desenvolver. Gostaria de saber tambem como faço para passar da equação cartesiana para parametrizada.
felipe grion
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Seg Fev 20, 2012 10:33
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: cursando

Re: Reta distancia ponto

Mensagempor LuizAquino » Seg Fev 20, 2012 11:43

felipe grion escreveu:Determine Ya em função de x para que o ponto A = (Xa,Ya) esteja sobre a reta r: x - 7y + 25 = 0. Determine agora as possibilidades para o ponto A de modo que, alem de estar na reta r, sua distancia a origem seja 5.


Bem, eu presumo que o início do texto seja algo como: "Determine y_a em função de x_a para que o ponto A = (x_a,\, y_a) (...)"

No que você escreveu "em função de x" ao invés de "em função de x_a" .

felipe grion escreveu:Não consegui desenvolver.


Se A = (x_a,\, y_a) está sobre a reta, então esse ponto deve atender a equação da reta. Isto é, devemos ter:

x_a - 7y_a + 25 = 0

Agora basta isolar o y_a e você terá essa variável em função de x_a .

Na segunda parte do exercício, deseja-se que além de estar sobre a reta, o ponto A esteja distante da origem em 5 unidades. Isto é, devemos ter:

\sqrt{x_a^2 + y_a^2} = 5

Sendo assim, deseja-se que o ponto A atenda a duas equações:

\begin{cases}
x_a - 7y_a + 25 = 0 \\
\sqrt{x_a^2 + y_a^2} = 5
\end{cases}

Resolvendo esse sistema (não linear), você obtém o ponto A desejado.

felipe grion escreveu:Gostaria de saber também como faço para passar da equação cartesiana para parametrizada.


Suponha que você tenha a equação cartesiana da reta:

ax + by + c = 0

Para determinar uma equação paramétrica dessa reta, basta fazer a substituição x = t e determinar y em função de t. Desse modo, obtemos que:

\begin{cases}
x = t \\
y = -\frac{a}{b}t - c
\end{cases}

Observação: nesse caso, devemos ter b diferente de zero.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.