• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Vetores

Vetores

Mensagempor Claudin » Qua Nov 02, 2011 03:19

Se U, V e W são vetores tais que V x U = V x W e V diferente do vetor nulo, então U = V.

Designei V = (Va, Vb, Vc)
W = (Wa, Wb, Wc)
U = (Ua, Ub, Uc)

Sendo assim "abri" todos os produtos vetoriais propostos no exercício, e resultou em:

(Vb.Uc - Va.Ub)i, (Vc.Ua - Va.Uc)j, (Va.Ub - Vb.Ua)k ------> V x U

(Vb.Wc - Vc.Wb)i, (Vc.Wa - Va.Wc)j, (Va.Wb - Vb.Wa)k -----> V x W

Sendo assim substituindo U = W, os resultados seriam iguais.
Mas o correto agora seria atribuir valores numéricos aos vetores U, V e W? Para ver se realmente a alternativa é verdadeira?
Mas ela é falsa, e devido a essas contas acima não conseguir provar corretamente o falso, e sim o contrário.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Vetores

Mensagempor LuizAquino » Dom Nov 06, 2011 17:43

Claudin escreveu:Se U, V e W são vetores tais que V x U = V x W e V diferente do vetor nulo, então U = V.

Eu presumo que o final da afirmação é: "(...) então U = W".

Essa afirmação é falsa.

Quando temos uma afirmação falsa, basta exibir um contraexemplo.

Escolha \vec{u} e \vec{w} distintos e paralelos a \vec{v} . Nesse caso irá ocorrer \vec{v}\times\vec{u} = \vec{0} e \vec{v}\times\vec{w} = \vec{0} . Ou seja, teremos \vec{v}\times\vec{u}  = \vec{v}\times\vec{w}, mas \vec{u}\neq\vec{w} .


Exemplo

\vec{v} = (1,\,0,\,0) \textrm{ e } \vec{u} = (2,\,0,\,0) \Rightarrow \vec{v}\times\vec{u} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & 0 \\ 2 & 0 & 0 \end{vmatrix} = \vec{0}

\vec{v} = (1,\,0,\,0) \textrm{ e } \vec{w} = (3,\,0,\,0) \Rightarrow \vec{v}\times\vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 0 & 0 \\ 3 & 0 & 0 \end{vmatrix} = \vec{0}

Portanto, \vec{v}\times\vec{u} = \vec{v}\times\vec{w}, mas \vec{u}\neq\vec{w} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59