• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Vetores

Vetores

Mensagempor Claudin » Qua Nov 02, 2011 02:22

Considere o paralelepípedo que tem um dos vértices no ponto A = (2, 2, 4) e os três vértices adjacentes a A nos pontos B = (7, 0, 7), C= (-3, 4, 6) e D= (1, 1, 12).
a) Determine as coordenadas do vértice E oposto ao vértice A.

Teria que traçar os possíveis vetores? AB, AC, AD, BC?

O que seriam os vértices adjacentes a A? Seriam os demais vértices?

b)Calcule a área da face que contém os pontos A, B, C.

Seria o produto vetorial de AB e AC?

c) Calcule o volume do paralelepípedo.

Iria calcular utilizando o produto misto entre três vetores correto?


Alguém ajudaria esclarecendo essas dúvidas, mostrando o caminho a ser seguido e se possível uma prévia resolução, pois necessito de saber como resolver o exercício com urgência, pois minha prova é depois de amanha e ainda continuo com essa dúvida.
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Vetores

Mensagempor LuizAquino » Dom Nov 06, 2011 16:31

Claudin escreveu:Considere o paralelepípedo que tem um dos vértices no ponto A = (2, 2, 4) e os três vértices adjacentes a A nos pontos B = (7, 0, 7), C= (-3, 4, 6) e D= (1, 1, 12).


A figura abaixo ilustra o paralelepípedo.

paralelepípedo.png
paralelepípedo.png (4.65 KiB) Exibido 526 vezes


Claudin escreveu:a) Determine as coordenadas do vértice E oposto ao vértice A.


Analisando a figura acima, note que:

E = A + \left(\vec{AB} + \vec{AC} +\vec{AD}\right)

O que seriam os vértices adjacentes a A? Seriam os demais vértices?

São os vértices vizinhos a A. Isto é, vértices que compartilham com A uma aresta.

Claudin escreveu:b)Calcule a área da face que contém os pontos A, B, C.
Seria o produto vetorial de AB e AC?


A área será dada pelo módulo do produto vetorial entre \vec{AB} e \vec{AC} . Isto é, deve-se calcular \left\Vert \vec{AB}\times\vec{AC}\right\Vert .

Claudin escreveu:c) Calcule o volume do paralelepípedo.

Iria calcular utilizando o produto misto entre três vetores correto?

Sim. No caso deve-se calcular: \left|\vec{AD}\cdot \left(\vec{AB}\times\vec{AC}\right)\right| .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.