• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Área do triângulo

Área do triângulo

Mensagempor -civil- » Qua Ago 10, 2011 22:41

Boulos - 3 ª ed. - Cap. 18

18-17) Considere as retas r: X= (1,1,0) + \lambda(0,1,1) e s: (x-1)/2 = y = z. Sejam A o ponto de intersecção de s com o plano \pi, e B e C, respectivamente, os pontos em que r intercepta Oxz e O xy. Calule a área do triângulo ABC (SO), nos casos:

(a) \pi: x - y + z = 2


Fazendo a intersecção de s e \pi, encontrei o ponto A = (2, \frac{1}{2}, \frac{1}{2})

Fazendo a intersecção entre r e Oxz
\pi_1: X = (0,0,0) + \gamma(1,0,0) + \alpha(0,01)
1 = \gamma
1 + \lambda = 0
\lambda = \alpha
\lambda = -1, \alpha = -1, \gamma = 1
B = (1, 0, -1)

\pi_2: X = (0,0,0) + \beta(1,0,0) + \theta(0,1,0)
1 = \beta
1 + \theta = 0
\lambda = 0
C = (1,1,0)

Usando os três pontos para calcular o determinante, cheguei que o determinante é igual a 2 e a área será 1. Mas o resultado do livro é \sqrt{\frac{3}{2}}. O que tem de errado na minha resolução.
-civil-
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 22, 2011 12:31
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Área do triângulo

Mensagempor LuizAquino » Sex Ago 12, 2011 13:05

Note que:
\vec{BA} = \left(1,\,\frac{1}{2},\,\frac{3}{2}\right)

\vec{BC} = \left(0,\,1,\,1\right)

Desse modo, \vec{BA}\times \vec{BC} = (-1, -1, 1) .

Para cacular a área de ABC basta tomar \frac{1}{2}||\vec{BA}\times \vec{BC}|| .

-civil- escreveu:Mas o resultado do livro é \sqrt{\frac{3}{2}}. O que tem de errado na minha resolução.

Na verdade, o resultado é \frac{\sqrt{3}}{2} .
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.