• Anúncio Global
    Respostas
    Exibições
    Última mensagem

area do setor circular

area do setor circular

Mensagempor stanley tiago » Seg Mai 02, 2011 16:35

determine a area das superfícies assinaladas da figura:

a) ABCD é um quadrado , e r = 8   \sqrt[]{2}
sfds.GIF
sfds.GIF (2.66 KiB) Exibido 2347 vezes



Eu tentei de alguma formas aqui só q nao deu muito certo

\alpha=\frac{360}{4}  -- \alpha=90 -- r=8\sqrt[]{3} -- {l}_{dc}= \frac{\alpha.r.\pi}{180}

então {l}_{dc}= \frac{90.8\sqrt[]{2}.\pi}{180} -- {l}_{dc}= 4\pi\sqrt[]{2}

{A}_{s}= \frac{{l}_{dc}.r}{2} -- {A}_{s}= \frac{4\pi\sqrt[]{2}.8\sqrt[]{2}}{2} -- {A}_{s}= 32\pi


Então pessual foi até aqui que eu consegui tirar do exercício , apartir daqui eu nao sei o que fazer !

Ah , a resposta certa é 145,92 cm²
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: area do setor circular

Mensagempor TheoFerraz » Seg Mai 02, 2011 17:02

Pense o seguinte.
O diametro da circunferencia é a diagonal do quadrado.

A diagonal dum quadrado de lado \alpha é sempre \alpha\sqrt[]{2}.

No seu caso. a diagonal é duas vezes o raio (diametro) entao fica que o lado do quadrado é

\alpha\sqrt[]{2}} = 2\times8\sqrt[]{2}

\alpha = 2\times8 = 16

Dai voce percebe que seu quadrado tem lado 16.

Se voce quer a area da parte preta na figura. é simples

Area da circunferencia - area do quadrado = area desejada


Portanto:

{A}_{c} = \pi\times{r}^{2}

e

{A}_{q} = {\alpha}^{2}

Ai voce faz a conta pans, só não vou falar muito pq acabei de me tocar que nao sei direito o que o problema pede, se for a area preta entao faça isso, {A}_{circunferencia} - {A}_{quadrado} = {A}_{desejada}

Mas de qualquer jeito, use aquela jogada da diagonal do quadrado ser sempre \alpha\sqrt[]{2}. E do diametro ser a diagonal do quadrado. Saindo dai vc tem informação até demais

Espero ter ajudado, Abraço
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: area do setor circular

Mensagempor stanley tiago » Seg Mai 02, 2011 17:22

É deu certo sim mlk , é isso mesmo
TheoFerraz escreveu:{A}_{circunferencia} - {A}_{quadrado} = {A}_{desejada}


vlw obrigado pela ajuda :y:
stanley tiago
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Seg Jan 17, 2011 14:23
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: area do setor circular

Mensagempor FilipeCaceres » Seg Mai 02, 2011 19:51

quadrilatero.png
quadrilatero.png (6.35 KiB) Exibido 2336 vezes


Só para complementar.

Dado um quadrilátero qualquer, podemos descobrir qual a sua área sabendo o valor das diagonais e o ângulo entre elas.
A=\frac{p.q.sen \alpha}{2}

No exercício temos um quadrado, e portanto as diagonais são iguais e com valor 2r ,pois está inscrita em uma circunferência, e o ângulo entre elas é de 90, desta forma temos,
A_{quadrado}=\frac{2r.2r.sen90}{2}=2r^2

O resto é semelhante,
A_{desejada}=A_{circunferencia} - A_{quadrado}
A_{desejada}=\pi r^2-2r^2
A_{desejada}=r^2(\pi -2)

Abraço.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: