• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Polinomio exercio II

Polinomio exercio II

Mensagempor MarianaAlmeida » Qui Jul 09, 2009 16:51

sÓ GOSTARIA DE SABER SE ESTÁ CORRETA A MANEIRA QUE EU UTILIZEI PARA RESOLVER

exercício:

Sabendo que 2+i é uma das raízes da euqção {x}^{4}-{3x}^{3}-{13x}^{2}+{37x}^{}-15=0, quais as outras raizes?

resolução:

{x}^{4}-{3x}^{3}-{13x}^{2}+{37x}^{}-15=0, (2+i)

{\left(2+i \right)}^{4}-{3\left(2+i \right)}^{3}-{13\left(2+i \right)}^{2}+{37\left(2+i \right)}^{}-15=0

2(16+{i}^{4})-3(8+{i}^{3})-13(4+{i}^{2})+74+37i-15=0

2{i}^{4}-3{i}^{3}-13i²+37i+15=0

{x}^{4}-{3x}^{3}-{13x}^{2}+{37x}^{}-15=0, (2-i)

{\left(2-i \right)}^{4}-{3\left(2-i \right)}^{3}-{13\left(2-i \right)}^{2}+{37\left(2-i \right)}^{}-15=0

-2{i}^{4}+3{i}^{3}+13{i}^{2}+37i+15=0

usei Briot para transforma em equação de segundo grau
-2{i}^{4}+3{i}^{3}+13{i}^{2}+37i+15=0

-2 +3 +13 +37 +15
-2 -2 7 -1 39 63
2 -2 3 5 49
-2x²+3x+5

passei para báskara

{x}_{1}= \frac{-3+\sqrt[]{9-4.(-2).5}}{2.(-2)}

{x}_{1}= \frac{-3+\sqrt[]{49}}{-4}

{x}_{1}=\frac{-3+7}{-4}

{x}_{1}=\frac{4}{-4}{x}_{1}= -1


{x}_{2}= \frac{-3-\sqrt[]{9-4.(-2).5}}{2.(-2)}

[tex]{x}_{2}= \frac{-3-\sqrt[]{49}}{-4}

[tex]{x}_{2}= \frac{-3-7}{-4}

{x}_{2}= \frac{-10}{-4} = \frac{-5}{-2}

Raizes= -1 e -5/2
MarianaAlmeida
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qui Jul 09, 2009 15:44
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Polinomio exercio II

Mensagempor Cleyson007 » Sáb Jul 11, 2009 08:48

Bom dia Mariana!

Mariana, primeiramente 2+i não é raiz deste polinômio. Quando você elevou 2+i a 4 o resultado daria -7+24i e não i^4+16.
E assim por diante... O resto deste polinômio não será nulo com este binômio, então isto implica no falado antes: não é raiz.

Por favor, confira se o problema foi digitado corretamente :-P

Até mais.

Um abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.