• Anúncio Global
    Respostas
    Exibições
    Última mensagem

prova da uesb 2006.1

prova da uesb 2006.1

Mensagempor Matheusvc1 » Dom Dez 08, 2013 15:30

1. Se f(x) = x3 + 2x2 - 3x + 2, então f(i) é um número complexo cujos argumento
principal e módulo são, respectivamente,

2.Se a soma dos n primeiros termos de uma progressão aritmética é dada
pela expressão Sn = n2 - 6n, então o décimo quinto termo dessa progressão
é um elemento do conjunto
01) {10, 15, 20}
02) {11, 16, 21}
03) {12, 17, 22}
04) {13, 18, 23}
05) {14, 19, 24}

3.Se 9^(x+1)/2=(3^x+1)/2, entao x é:
Matheusvc1
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Sáb Dez 07, 2013 18:52
Formação Escolar: ENSINO MÉDIO
Área/Curso: engenharia civil
Andamento: cursando

Re: prova da uesb 2006.1

Mensagempor DanielFerreira » Ter Fev 11, 2014 16:10

Matheusvc1 escreveu:1. Se f(x) = x3 + 2x2 - 3x + 2, então f(i) é um número complexo cujos argumento
principal e módulo são, respectivamente,


\\ f(x) = x^3 + 2x^2 - 3x + 2 \\\\ f(i) = i^3 + 2i^2 - 3i + 2 \\\\ f(i) = - i - 2 - 3i + 2 \\\\ f(i) = - 4i


Módulo:

\\ \rho = \sqrt{a^2 + b^2} \\\\ \rho = \sqrt{0 + 16} \\\\ \boxed{\rho = 4}


Argumento:

\\ \sin \theta = \frac{b}{\rho} \\\\ \sin \theta = \frac{- 4}{4} \\\\ \sin \theta = - 1 \\\\ \boxed{\theta = \frac{3\pi}{2}}
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.