• Anúncio Global
    Respostas
    Exibições
    Última mensagem

inequações - ajuda

inequações - ajuda

Mensagempor bira19 » Dom Fev 19, 2012 19:28

Nâo consigo avançar, e como dou a resposta em forma de intervalo

Chequei até este ponto:

-2x\left(x-1\leq \right)\left({x}^{2}-1 \right)\left({x}^{2}-2 \right)

{-x}^{2}-2x{-x}^{4}+{2x}^{2}{+x}^{2}+2\leq0

{-x}^{4}{+2x}^{2}-2x+2\leq0

x\left({-1}^{4}+2x+2 \right)+2\leq0

x\left(1+2x-2 \right)+2\leq0
bira19
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Seg Out 03, 2011 20:41
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em eletronica
Andamento: formado

Re: inequações - ajuda

Mensagempor LuizAquino » Seg Fev 20, 2012 01:25

bira19 escreveu:Nâo consigo avançar, e como dou a resposta em forma de intervalo

Chequei até este ponto:

-2x\left(x-1\leq \right)\left({x}^{2}-1 \right)\left({x}^{2}-2 \right)
{-x}^{2}-2x{-x}^{4}+{2x}^{2}{+x}^{2}+2\leq0
{-x}^{4}{+2x}^{2}-2x+2\leq0
x\left({-1}^{4}+2x+2 \right)+2\leq0
x\left(1+2x-2 \right)+2\leq 0


Você deve evitar aplicar a distributiva. Isso só dificulta a solução da inequação.

Vejamos como proceder.

-2x\left(x-1 \right) \leq \left({x}^{2}-1 \right)\left({x}^{2}-2 \right)

-2x\left(x-1 \right) - \left({x}^{2}-1 \right)\left({x}^{2} - 2 \right) \leq 0

Usando o produto notável a^2 - b^2 = (a-b)(a+b) , temos que:

-2x\left(x-1 \right) - \left(x-1\right)(x+1)\left({x}^{2} - 2 \right) \leq 0

Colocando o termo (x-1) em evidência, temos que:

\left(x-1 \right)\left[-2x - (x+1)\left({x}^{2} - 2 \right)\right]\leq 0

\left(x-1 \right)\left(-2x - x^3 + 2x - x^2 + 2 \right) \leq 0

\left(x-1 \right)\left(- x^3 - x^2 + 2 \right) \leq 0

Aqui você precisa fatorar um polinômio de grau 3. Se você ainda não sabe como fazer isso, então é recomendado que você faça uma revisão.

Para fatorar esse polinômio, precisamos descobrir as suas raízes. Uma delas é fácil de obter. Note que se x = 1, temos que -(1)^3-(1)^2+2 = -1 -1 + 2= 0 . Ou seja, x = 1 é uma raiz desse polinômio. Para achar as outras, precisamos aplicar um processo de redução de grau. Tipicamente, esse processo é realizado aplicando-se o dispositivo prático de Briot-Ruffini. Após a aplicação desse processo, você deve obter:

\left(x-1 \right)(x-1)\left(- x^2 - 2x^2 - 2 \right) \leq 0

Agora basta resolver essa inequação produto.

Se você ainda não sabe como resolver algo desse tipo, eu recomendo que você consulte o material abaixo.

Inequação Produto - Brasil Escola
http://www.brasilescola.com/matematica/ ... duto-1.htm

Matemática - Aula 9 - Inequações - Parte 5
Canal do Nerckie no YouTube: http://www.youtube.com/nerckie
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59