• Anúncio Global
    Respostas
    Exibições
    Última mensagem

INequações

INequações

Mensagempor gicapo » Seg Jan 09, 2012 09:58

|2-3x|<|x-3|; |x-2|=<|x|-2 e |x-2|<|x|+2 Como se resolvem estas 2 inequações
gicapo
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Jan 09, 2012 09:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão
Andamento: cursando

Re: INequações

Mensagempor Renato_RJ » Seg Jan 09, 2012 14:12

...
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: INequações

Mensagempor gicapo » Seg Jan 09, 2012 14:50

Renato_RJ escreveu:...



Não 3 inequações modulares, como se resolvem ????
gicapo
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Jan 09, 2012 09:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão
Andamento: cursando

Re: INequações

Mensagempor Renato_RJ » Seg Jan 09, 2012 16:17

Gicapo, eu tinha escrito algo que não estava coerente, por isso apaguei..
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: INequações

Mensagempor pipinha1982 » Qua Jan 11, 2012 15:02

giapoo meu mail e anafilipa1982@hotmail.com
pipinha1982
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Jan 10, 2012 16:26
Formação Escolar: ENSINO MÉDIO
Área/Curso: gestao
Andamento: cursando

Re: INequações

Mensagempor joao_pimentel » Qua Jan 11, 2012 20:41

Meu caro é só lembrar-se que:

|x|<a \Leftrightarrow -a < x < a

Assim

|x|<|y| \Leftrightarrow -|y| < x < |y| \Leftrightarrow  \begin{cases} x>-|y| \\ x<|y| \end{cases}

Basta agora desdobrar o |y| em dois casos e ficar com quatro casos...

A outra inequação é semelhante...
joao_pimentel
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Qua Dez 14, 2011 20:11
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: INequações

Mensagempor gicapo » Qua Jan 11, 2012 20:52

joao_pimentel escreveu:Meu caro é só lembrar-se que:

|x|<a \Leftrightarrow -a < x < a

Assim

|x|<|y| \Leftrightarrow -|y| < x < |y| \Leftrightarrow  \begin{cases} x>-|y| \\ x<|y| \end{cases}

Basta agora desdobrar o |y| em dois casos e ficar com quatro casos...

A outra inequação é semelhante...


Mais uma vez muito obriagdo Joao e um abraço
gicapo
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Jan 09, 2012 09:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Gestão
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.