• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Polinômios

Polinômios

Mensagempor Fatima » Sex Mai 20, 2011 11:33

Achar as raízes do Polinômio P(x)={x}^{4}-3{x}^{3}+7{x}^{2}-6x+4.
Gostaria muito que me ensinasse a chegar estas raízes. Desde já agradeço.
Fatima
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mai 20, 2011 11:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Polinômios

Mensagempor Molina » Sex Mai 20, 2011 15:05

Boa tarde, Fatima.

Normalmente com um polinômio de grau maior ou igual a 4 podemos tentar uma decomposição dele (o que pode não ser algo fácil) ou então achar um valor a que é raiz deste polinômio e fazer a divisão de P(x) por (x-a), o que nos fornecerá um polinômio de terceiro grau e assim sucessivamente...

Neste teu exemplo o que me parece que as raízes são complexas. Você tem o gabarito para confirmar isto?
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Polinômios

Mensagempor Fatima » Sáb Mai 21, 2011 16:10

Não tenho o gabarito. mas todas as raízes são complexas. Não existe uma fórmula para achar estas raízes?
Obrigado pela ajuda.
Fatima
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mai 20, 2011 11:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Polinômios

Mensagempor Fatima » Sáb Mai 21, 2011 16:14

Molina escreveu:Boa tarde, Fatima.

Normalmente com um polinômio de grau maior ou igual a 4 podemos tentar uma decomposição dele (o que pode não ser algo fácil) ou então achar um valor a que é raiz deste polinômio e fazer a divisão de P(x) por (x-a), o que nos fornecerá um polinômio de terceiro grau e assim sucessivamente...

Neste teu exemplo o que me parece que as raízes são complexas. Você tem o gabarito para confirmar isto?

Não tenho o gabarito. mas todas as raízes são complexas. Não existe uma fórmula para achar estas raízes?
Obrigado pela ajuda.
Fatima
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mai 20, 2011 11:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Polinômios

Mensagempor Fatima » Sáb Mai 21, 2011 16:18

Molina escreveu:Boa tarde, Fatima.

Normalmente com um polinômio de grau maior ou igual a 4 podemos tentar uma decomposição dele (o que pode não ser algo fácil) ou então achar um valor a que é raiz deste polinômio e fazer a divisão de P(x) por (x-a), o que nos fornecerá um polinômio de terceiro grau e assim sucessivamente...

Neste teu exemplo o que me parece que as raízes são complexas. Você tem o gabarito para confirmar isto?
Fatima
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Mai 20, 2011 11:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado

Re: Polinômios

Mensagempor Molina » Seg Mai 23, 2011 00:48

Boa noite, Fatima.

Há fórmula sim, porém elas são muito trabalhosas de se lidar. Além disso, há métodos numéricos e algébricos de se encontrar as raízes, mas não são formas triviais...

Como eu disse, é mais fácil fatorar este polinômio.

Perceba que:

P(x)=x^4-3x^3+7x^2-6x+4=(x^2-2x+4)(x^2-x+1)

Agora você tem dois polinômios de 2o grau, que são muito mais fáceis de se obter as raízes complexas.


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.