• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Numeros Complexos] Dificuldade com Plano de Gauss

[Numeros Complexos] Dificuldade com Plano de Gauss

Mensagempor lucas_metal » Qua Abr 04, 2012 17:07

To com um problema aqui, vou fazer prova e não consegui entender essa **** de plano de gauss ainda, veja o enunciado:

Represente no plano de Gauss os pontos M,N,P, e Q, respectivas imagens dos números Z1+ (-2,1), Z2= (0,-1), Z1+Z2 e Z1*Z2

Dai eu pensei que fosse tipo assim:
Pega o Z1 e o Z2 soma e multiplica e os resultados eu coloco no plano de gauss (sendo que os números imaginarios no eixo Im(z) e os reais no Re(z))
Mas não é assim pois na resposta do livro ta assim:
Vou tentar explicar como esta no plano:

(1,2) ponto denominado "Q" obs: o número 1 no eixo Re(z) e o 2 no Im(z)
(-2,1) Em cima do -2 tá a letra P e o ponto entre eles se chama M
(-1) Só tem esse -1 marcado no eixo Im(z) que se chama N

E agora pessoal alguém sabe como faz esse negócio, pois vou fazer prova e to entendo muita pouca coisa da matéria, e vcs sabem como eh, se não pega bem no começo depois no final do ano é mais dificil ainda....
Se alguém puder me ajudar eu agradeço MUITO MUITO MUITO!
lucas_metal
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Qua Abr 04, 2012 17:02
Formação Escolar: ENSINO MÉDIO
Área/Curso: 3
Andamento: cursando

Re: [Numeros Complexos] Dificuldade com Plano de Gauss

Mensagempor fraol » Qua Abr 04, 2012 19:58

Colocar os pontos no plano complexo, não deve oferecer dificuldades pois é apenas questão de cruzar os x e y correspondentes.

Se você tem os complexos Z1=(-2,1) e Z2=(0,-1), então

Z1+Z2 = (-2,1)+(0,-1) ( basta somar as coordenadas correspondentes ).

Z1Z2 = (-2,1)(0,-1) ( Aqui é uma multiplicação entre complexos que fica assim ( -2.0 - 1(-1), -2(-1)+1.0 )

Então é só terminar as contas e plotar os pontos no plano. Quer tentar?
fraol
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 392
Registrado em: Dom Dez 11, 2011 20:08
Localização: Mogi das Cruzes-SP
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}