• Anúncio Global
    Respostas
    Exibições
    Última mensagem

numeros complexos

numeros complexos

Mensagempor juflamanto » Ter Ago 18, 2015 16:23

Eu fiz essa questão e encontrei \frac{3a-6}{{a}^{2}+9}\frac{-{a}^{2}+2ai}{{a}^{2}+9}
ou seja a seria igual a zero, mas nao tenho certeza se fiz certo
Anexos
cal1.JPG
cal1.JPG (5.77 KiB) Exibido 2957 vezes
juflamanto
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sex Ago 07, 2015 17:55
Formação Escolar: GRADUAÇÃO
Área/Curso: fisica
Andamento: cursando

Re: numeros complexos

Mensagempor nakagumahissao » Qua Ago 19, 2015 10:12

Vamos resolver, mas antes vamos relembrar alguns resultados:

i^{4n} = 1, \; \textbf{i}^{\textbf{4n + 1}} \textbf{= i}, \; i^{4n + 2} = -1, \; e \; i^{4n + 3} = -i

Tendo estes resultados em mente, vamos agora ao problema:

\frac{2i^{85} - ai^{17}}{a - 3i}

\frac{85}{4} = 21 \; com \;resto\; 1 \Rightarrow 4n + 1, \; n = 21

\frac{17}{4} = 4 \; com \;resto\; 1 \Rightarrow 4n + 1, \; n = 4

Agora, fazendo as substituições necessárias, tem-se:

\frac{2i - ai}{a - 3i} = \frac{2i - ai}{a - 3i}\left(\frac{a + 3i}{a + 3i} \right) = \frac{2ai + 6i^2 - a^{2}i -3ai^{2}}{a^2 - 9i^{2}} =

= \frac{2ai + 3i^2 - a^{2}i}{a^2 +9} = \frac{- 3 + (2a - a^2)i}{a^2 +9} = -\frac{3}{a^2 +9} + \frac{2a - a^2}{a^2 +9}i \;\;\;\; [1]

O problema pede para que se encontre o valor de para que a expressão seja uma valor real. Um valor real z = m + ni possui n = 0. Na expressão final [1] acima, temos que igualar o coeficiente da parte imaginária a zero, da seguinte maneira:

\frac{2a - a^2}{a^2 +9} = 0

Resolvendo:

\frac{2a - a^2}{a^2 +9} = 0 \Rightarrow 2a - a^2 = 0 \Leftrightarrow a(-a + 2) = 0 \Leftrightarrow a = 0 \; ou \;  a = 2

Portanto, a = 0 ou a = 2 para que a expressão inicial fique somente com valores reais.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}