• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Números complexos módulo de dois números complexos important

Números complexos módulo de dois números complexos important

Mensagempor elisamaria » Qui Jun 11, 2015 16:56

Considere z um número complexo cujas partes, real e imaginária, não se anulam simultaneamente. Então, os números complexos que satisfazem a equação z + 1/z = 1, possuem módulo igual a:

a) 1/2.
b) √3/2.
c) √3.
d) 1.
elisamaria
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Seg Mar 09, 2015 16:07
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Números complexos módulo de dois números complexos impor

Mensagempor nakagumahissao » Qui Jun 11, 2015 19:20

Resolução:

[1] z + \frac{1}{z} = 1

Tomemos z como sendo:

z = a + bi

e substituindo em [1], teremos:

z + \frac{1}{z} = 1 \Leftrightarrow z \cdot z + 1 = 1

\left(a + bi \right)\left(a + bi \right) + 1 = 1 \Leftrightarrow a^2 + abi + abi + b^2i^2 = a^2 + 2abi - b^2 = 1

a^2 + 2abi - b^2 \equiv 1 \Rightarrow (a^2 - b^2) + 2abi \equiv 1

Desta última sabemos o valor Real e o imaginário necessário para calcular a e b. Dessa maneira, temos que:

a^2 - b^2 = 1

2ab = 0

Desta última, sabemos que a ou b vale 0, mas não ambos, pois as partes, real e imaginária, não se anulam simultaneamente conforme o enunciado.

Façamos b = 0 e calculemos a:

a^2 + b^2 = 1 \Leftrightarrow a^2 + 0^2 = 1 \Leftrightarrow a^2 + 0 = 1 \Leftrightarrow a^2 = 1 \Rightarrow a = \pm 1

Portanto, a e b poderão ser:

a = \pm 1

b = 0

ou

b = \pm 1

a = 0

Quanto ao módulo sendo procurado, para quaisquer um dos resultados acima, deverá ser:

\left|z \right| = \sqrt[]{\left(\pm 1 \right)^{2} + 0^2} = 1

Portanto, a opção correta é a letra (D).


Espero ter auxiliado.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 385
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.