• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão de concurso militar

Questão de concurso militar

Mensagempor Jonatan » Ter Ago 03, 2010 14:44

Considere no Plano de Argand-Gauss os números complexos {z}_{1} = -x-2i, {z}_{2} = -2i, {z}_{3} = -2+3i, {z}_{4} = x+yi, onde x e y são números reais quaisquer e {i}^{2}=-1. Sobre o conjunto desses números complexos que atendem simultaneamente às condições:

I) Re(conjugado de {z}_{1} . conjugado de {z}_{2}) \leq Im(conjugado de {z}_{1} . conjugado de {z}_{2})

II) |{z}_{3} + {z}_{4}| \leq 2

é correto afimar que:
a) representa uma região plana cuja área é menor que 6 unidades de área.
b) possui vários elementos que são números imaginários puros.
c) possui vários elementos que são números reais.
d) seu elemento z de menor módulo possível possui afixo que pertence à reta (r) 3x + 2y = 0

Gabarito: d)

Fazendo as condições I e II, cheguei no seguinte

Condição I) x \leq 2

Condição II) {(-2+x)}^{2} + {(3+y)}^{2} \leq 4
Ou seja, cheguei em um círculo de centro C =(2,-3) e Raio = 2

Fazendo então a representação da interseção de x \leq 2 e do círculo, cheguei em um semi-círculo.

A minha dúvida agora é saber se calculei as condições I e II corretamente e analisar cada uma das alternativas. De cara eu achei que a letra B estivesse correta, já que o semi-círculo corresponde a um conjunto de vários números complexos...

Alguém pode resolver para mim? Desde já, agradeço.
Jonatan.
Jonatan
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Jun 16, 2010 13:29
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão de concurso militar

Mensagempor MarceloFantini » Qui Ago 05, 2010 17:48

Como você fez as contas, imagino que tenha chegado nisso também:

(i) x \leq 2
(ii) (x-2)^2 + (y+3)^2 \leq 4

Isso mostra que a região é uma circunferência de raio 2 e sua área cujo centro é (2,-3). Como o raio é dois, a área é A = \pi r^2 = 4 \pi \mbox{u.a.}, que é maior que 6 unidades de área. Se você fizer o gráfico, verá que ele tangencia o eixo y em um ponto e não encosta numa no eixo x, portanto não tem mais de um elemento imaginário puro e não tem nenhum real. A única alternativa que sobra é a D. O menor módulo possível é sempre zero, e a equação de reta que passa pela origem (para caracterizar módulo) e passa pelo centro da circunferência (módulo 0) é a dada na alternativa.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.