• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questão de concurso militar

Questão de concurso militar

Mensagempor Jonatan » Ter Ago 03, 2010 14:44

Considere no Plano de Argand-Gauss os números complexos {z}_{1} = -x-2i, {z}_{2} = -2i, {z}_{3} = -2+3i, {z}_{4} = x+yi, onde x e y são números reais quaisquer e {i}^{2}=-1. Sobre o conjunto desses números complexos que atendem simultaneamente às condições:

I) Re(conjugado de {z}_{1} . conjugado de {z}_{2}) \leq Im(conjugado de {z}_{1} . conjugado de {z}_{2})

II) |{z}_{3} + {z}_{4}| \leq 2

é correto afimar que:
a) representa uma região plana cuja área é menor que 6 unidades de área.
b) possui vários elementos que são números imaginários puros.
c) possui vários elementos que são números reais.
d) seu elemento z de menor módulo possível possui afixo que pertence à reta (r) 3x + 2y = 0

Gabarito: d)

Fazendo as condições I e II, cheguei no seguinte

Condição I) x \leq 2

Condição II) {(-2+x)}^{2} + {(3+y)}^{2} \leq 4
Ou seja, cheguei em um círculo de centro C =(2,-3) e Raio = 2

Fazendo então a representação da interseção de x \leq 2 e do círculo, cheguei em um semi-círculo.

A minha dúvida agora é saber se calculei as condições I e II corretamente e analisar cada uma das alternativas. De cara eu achei que a letra B estivesse correta, já que o semi-círculo corresponde a um conjunto de vários números complexos...

Alguém pode resolver para mim? Desde já, agradeço.
Jonatan.
Jonatan
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Qua Jun 16, 2010 13:29
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Questão de concurso militar

Mensagempor MarceloFantini » Qui Ago 05, 2010 17:48

Como você fez as contas, imagino que tenha chegado nisso também:

(i) x \leq 2
(ii) (x-2)^2 + (y+3)^2 \leq 4

Isso mostra que a região é uma circunferência de raio 2 e sua área cujo centro é (2,-3). Como o raio é dois, a área é A = \pi r^2 = 4 \pi \mbox{u.a.}, que é maior que 6 unidades de área. Se você fizer o gráfico, verá que ele tangencia o eixo y em um ponto e não encosta numa no eixo x, portanto não tem mais de um elemento imaginário puro e não tem nenhum real. A única alternativa que sobra é a D. O menor módulo possível é sempre zero, e a equação de reta que passa pela origem (para caracterizar módulo) e passa pelo centro da circunferência (módulo 0) é a dada na alternativa.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado


Voltar para Números Complexos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59