por jordyson rocha » Seg Jun 03, 2013 08:57
A representação geométrica do número complexo z que satisfaz à equação|z| + z = 1 + 3i é

- opções de gabarito
Não entendi como vou achar o número complexo z sendo que ainda tem o módulo de z para calcular. vlw pela ajuda.
-
jordyson rocha
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Jan 30, 2013 11:44
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por fraol » Qua Jun 19, 2013 21:38
Oi, boa noite,
Se você fizer

então

. Assim, algebricamente você tem o seguinte:

Levando

para o segundo membro:

então

.
Nessa expressão temos uma igualdade entre um número real no lado esquerdo e um número complexo no lado direito. Logo a parte imaginária no lado direito deve ser 0 o que nos leva a

, o que por si só, de acordo com as alternativas dadas, já permite dar a resposta ao exercício.
Mas, substituindo esse

, a nossa expressão fica assim:
![\sqrt[2]{a^2+9} = 1-a \sqrt[2]{a^2+9} = 1-a](/latexrender/pictures/06815b98b70487971d82db0bb7a94ca3.png)
.
Agora você pode elevar ambos os membros ao quadrado e obterá o valor de

.
Boa sorte.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.