por stuart clark » Dom Abr 15, 2012 13:05
Prove that

-
stuart clark
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Sáb Mai 28, 2011 00:32
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por fraol » Sáb Abr 21, 2012 16:28
stuart clark escreveu:Prove that

Let

be a complex number such that:

and

.
So:

. Then we have:

and

.
Now, with results above, let's do some algebraic manipulation with the expression inside natural log and use the Euler identity

:

.
Returning to the original expression and applying the last result we get:

.
From trigonometry, we have:

.
Replacing

and

in this last expression:

,
that is the desired result (note that this solution doesn't contains the negative sign ).
.
-
fraol
- Colaborador Voluntário

-
- Mensagens: 392
- Registrado em: Dom Dez 11, 2011 20:08
- Localização: Mogi das Cruzes-SP
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: formado
por stuart clark » Qua Mai 02, 2012 01:07
Thanks fraol
-
stuart clark
- Usuário Dedicado

-
- Mensagens: 34
- Registrado em: Sáb Mai 28, 2011 00:32
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Prove: n(A X B) = n(A) * n(B)
por juliomarcos » Dom Set 14, 2008 02:58
- 3 Respostas
- 5284 Exibições
- Última mensagem por admin

Qua Set 24, 2008 05:33
Conjuntos
-
- Prove que
por Balanar » Dom Ago 29, 2010 17:22
- 1 Respostas
- 2317 Exibições
- Última mensagem por MarceloFantini

Seg Ago 30, 2010 01:24
Álgebra Elementar
-
- Prove
por chronoss » Dom Abr 21, 2013 16:52
- 3 Respostas
- 3073 Exibições
- Última mensagem por chronoss

Seg Abr 22, 2013 14:23
Álgebra Elementar
-
- Prove
por chronoss » Seg Abr 29, 2013 20:40
- 1 Respostas
- 1989 Exibições
- Última mensagem por chronoss

Sáb Mai 04, 2013 13:55
Álgebra Elementar
-
- PROVE
por pedro22132938 » Sex Ago 21, 2015 20:10
- 1 Respostas
- 2832 Exibições
- Última mensagem por e8group

Dom Ago 23, 2015 20:21
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Unesp - 95 Números Complexos
Autor:
Alucard014 - Dom Ago 01, 2010 18:22
(UNESP - 95) Seja L o Afixo de um Número complexo

em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.
Assunto:
Unesp - 95 Números Complexos
Autor:
MarceloFantini - Qui Ago 05, 2010 17:27
Seja

o ângulo entre o eixo horizontal e o afixo

. O triângulo é retângulo com catetos

e

, tal que

. Seja

o ângulo complementar. Então

. Como

, o ângulo que o afixo

formará com a horizontal será

, mas negativo pois tem de ser no quarto quadrante. Se

, então

. Como módulo é um:

.
Logo, o afixo é

.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.