• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistema

Sistema

Mensagempor JustForFun » Sáb Nov 06, 2010 20:28

Olá pessoal! Td bem?

Não estou conseguindo enxergar como que posso resolver essa questão:
1- Resolva o sistema, onde x e y são números reais:

4x + y = 11
{x}^{5}+\left(5/1 \right){x}^{4}y}+\left(5/2 \right){x}^{3}{y}^{2}+\left(5/3 \right){x}^{2}{y}^{3}+\left(5/4 \right)x{y}^{4}+{y}^{5}=32
Obs.: Os (5/1), (5/2)... não são frações e sim números binomiais!

Por favor me ajudem! Mesmo transformando para (x+y)[elevado a 5] não consigo saber como resolver...
Muito obrigado!
JustForFun
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Nov 05, 2010 22:16
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Sistema

Mensagempor Molina » Sáb Nov 06, 2010 22:17

JustForFun escreveu:Olá pessoal! Td bem?

Não estou conseguindo enxergar como que posso resolver essa questão:
1- Resolva o sistema, onde x e y são números reais:

4x + y = 11
{x}^{5}+\left(5/1 \right){x}^{4}y}+\left(5/2 \right){x}^{3}{y}^{2}+\left(5/3 \right){x}^{2}{y}^{3}+\left(5/4 \right)x{y}^{4}+{y}^{5}=32
Obs.: Os (5/1), (5/2)... não são frações e sim números binomiais!

Por favor me ajudem! Mesmo transformando para (x+y)[elevado a 5] não consigo saber como resolver...
Muito obrigado!

Boa noite.

Lembre-se que:

\begin{pmatrix}
   n  \\ 
   p 
\end{pmatrix}= \frac{n!}{(n-p)!p!}

Assim,

\begin{pmatrix}
   5  \\ 
   1 
\end{pmatrix}= \frac{5!}{(5-1)!1!}=5

\begin{pmatrix}
   5  \\ 
   2 
\end{pmatrix}= \frac{5!}{(5-2)!2!}=10

\begin{pmatrix}
   5  \\ 
   3 
\end{pmatrix}= \frac{5!}{(5-3)!3!}=10

\begin{pmatrix}
   5  \\ 
   4 
\end{pmatrix}= \frac{5!}{(5-4)!4!}=5

Reescrevendo o sistema temos:
4x + y = 11
{x}^{5}+5{x}^{4}y}+10{x}^{3}{y}^{2}+10{x}^{2}{y}^{3}+5x{y}^{4}+{y}^{5}=32

e consequentemente...

4x + y = 11
(x+y)^5=32

Reescrevendo o 32 na base 2, temos:

4x + y = 11
(x+y)^5=2^5

e consequentemente...

4x + y = 11
x+y=2

Subtraindo as equações, concluímos que x=3 e y=-1

Qualquer dúvida informe!

Bom estudo :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Sistema

Mensagempor JustForFun » Dom Nov 07, 2010 02:36

Muito obrigado molina! Ajudou pra caramba! Vlw MESMO! :-D
Abraços
JustForFun
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Nov 05, 2010 22:16
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.