por Jhennyfer » Sáb Mar 30, 2013 15:42
No calculo de (x²+xy)^15, o termo em que o grau de x é 21 vale:
Ps: a resposta é 5005x^21y^9, preciso de ajuda com a resolução
Att, Jhenny ;*
-
Jhennyfer
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Sáb Mar 30, 2013 15:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Sáb Mar 30, 2013 16:32
Observe que
![(x^2 + xy)^{15} = (x[x+y])^{15} = x^{15}[x+y]^15 (x^2 + xy)^{15} = (x[x+y])^{15} = x^{15}[x+y]^15](/latexrender/pictures/0dd56839cfcbbead5db39445b8c5d9a6.png)
.O termo em que o grau de

é grau 21 será o termo que contém "x de grau 6" de
![[x+y]^{15} [x+y]^{15}](/latexrender/pictures/526c1126e769359a1f144cf8bce6dddb.png)
.Logo pelo binômio de newton ,tiramos que o termo que possui x com grau 6 é

.Multiplicando por

resulta

.
Alternativamente , visto que
![(x^2 + xy)^15 = (x[x+y])^15 = x^15[x+y]^15 (x^2 + xy)^15 = (x[x+y])^15 = x^15[x+y]^15](/latexrender/pictures/00595a4623dfae87707506c7f0b4d13a.png)
.Cada termo ou parcela do desenvolvimento

pelo binômio de newton pode ser escrito por

para

.Assim , se

é o primeiro termo ,

segundo termo e assim sucessivamente . Aplicando a distributiva de

sobre

expandido pelo binômio de newton ,cada parcela(ou termo ) será multiplicada(o) por

, então o mesmo será dado por

. Fazendo

obtemos

. Segue então o resultado ..
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Jhennyfer » Sáb Mar 30, 2013 19:43
Não compreendo como funciona essa parte de grau de x, podia me explicar melhor isso?
-
Jhennyfer
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Sáb Mar 30, 2013 15:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por e8group » Sáb Mar 30, 2013 20:33
Digamos que

(k natural) ,o termo

possui grau k .Se queremos encontar o termo que o grau de x é 21 .Como ja temos

(o grau de x é 15) multiplicando

, a conclusão é que precisamos encontrar um termo de

em que o grau de

é 6 . Pois

, lembre-se em produto de potências de mesma base conserva a base e soma os expoentes . Assim, por exemplo :

.Em resumo ao desenvolver

pelo binômio de newton precisamos encontar um termo que contém x de grau 6 ,isto é,

(não importa o grau de y) por que

.Segue então que o termo que contém x com o grau 6 é

conforme eu já postei acima , inclusive uma solução alternativa .
Só por curiosidade com auxílio do site
wolframalpha ,veja a forma expandida de

no seguinte link :
http://www.wolframalpha.com/input/?i=Ex ... y%29%5E15+Lembrando que temos

multiplicando

temos então que em todas parcelas que contém a base

, o grau de

aumentará em 15 , estamos somando

no expoente da base

.
Conforme o link abaixo :
http://www.wolframalpha.com/input/?i=Ex ... y%29%5E15+Se permanecer dúvidas retorne !
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Jhennyfer » Dom Mar 31, 2013 23:04
Muito obrigado, acabaram-se as minhas dúvidas em relação à este assunto.
Quanto ao desenvolvimento, estou bem resolvida, era só essa parte de grau mesmo que eu nunca tinha visto antes.
E o site wolframalpha eu já conhecia, uso sempre, mas valeu a dica! Abraços, e sucesso ;*
-
Jhennyfer
- Usuário Parceiro

-
- Mensagens: 67
- Registrado em: Sáb Mar 30, 2013 15:19
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Binômio de Newton
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Questão POSCOMP 2011] Ajuda para interpretar questão
por hlustosa » Dom Jul 29, 2012 14:54
- 3 Respostas
- 12809 Exibições
- Última mensagem por hlustosa

Seg Jul 30, 2012 01:13
Funções
-
- Questão de P.A.
por mushthielv » Seg Ago 17, 2009 12:21
- 2 Respostas
- 10836 Exibições
- Última mensagem por Elcioschin

Ter Ago 18, 2009 08:54
Progressões
-
- QUESTÃO
por GABRIELA » Ter Set 08, 2009 16:32
- 2 Respostas
- 14574 Exibições
- Última mensagem por GABRIELA

Ter Set 08, 2009 21:21
Matrizes e Determinantes
-
- Questão da FCC
por wanderlymarques » Qua Nov 18, 2009 12:44
- 2 Respostas
- 4891 Exibições
- Última mensagem por wanderlymarques

Qui Nov 19, 2009 12:58
Cálculo: Limites, Derivadas e Integrais
-
- questão
por sirle ignes » Seg Mar 08, 2010 23:46
- 2 Respostas
- 4667 Exibições
- Última mensagem por sirle ignes

Ter Mar 09, 2010 17:32
Progressões
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.