por cristina » Sex Ago 20, 2010 23:47
Boa noite estou precisando de ajuda
O termo independente de x no desenvolvimento de
![\left(\frac{1}{{x}^{2}} -\sqrt[4]{x} \right){}^{18} \left(\frac{1}{{x}^{2}} -\sqrt[4]{x} \right){}^{18}](/latexrender/pictures/2c9ca24bbae681ad7c9da8ecfbba77c7.png)
é:
se alguem puder me ajudar agradeço
-
cristina
- Usuário Parceiro

-
- Mensagens: 82
- Registrado em: Qua Set 02, 2009 17:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura/ matematica
- Andamento: cursando
por VtinxD » Dom Ago 22, 2010 01:50
Para achar o termo independente desta função binomial a forma que conheço seria usar o termo geral de um binomio.Onde o termo independente é aquele onde o x tem coeficiente igual a zero.
![f(x)={\left(1/{x}^{2} - \sqrt[4]{x} \right)}^{18} f(x)={\left(1/{x}^{2} - \sqrt[4]{x} \right)}^{18}](/latexrender/pictures/555f1620520737bf8dd4b8e1237332b9.png)
Onde T é o termo geral da função f(x):
![{T}_{n+1}= \frac{18!}{n!\left(18-n \right)!}. \left({1/{x}^{2}} \right)^{18-n} .\left({-\sqrt[4]{x}} \right)^{n} {T}_{n+1}= \frac{18!}{n!\left(18-n \right)!}. \left({1/{x}^{2}} \right)^{18-n} .\left({-\sqrt[4]{x}} \right)^{n}](/latexrender/pictures/e6095ef015bd8dfcf5b6c11e198db2f2.png)
Para achar o termo indepente,primeiro temos que achar qual termo ,logo o valor de n :
![\left({1/{x}^{2}} \right)^{18-n}. \left({-\sqrt[4]{x}} \right)^{n} = {x}^{0} \left({1/{x}^{2}} \right)^{18-n}. \left({-\sqrt[4]{x}} \right)^{n} = {x}^{0}](/latexrender/pictures/bbe16b7c9c701b9554e816eab8ce0f2a.png)
Colocando de uma forma mais amigavel:

Na multiplicação se soma os espoentes e nesse caso os iguala a zero para que igualdade se torne valida.

Substituindo na formula do termo geral:

`
É o meu primeiro post e foi bem complicado trabalhar com o editor de formulas, espero ter ajudado e tambem que esteja certo

.
-
VtinxD
- Usuário Parceiro

-
- Mensagens: 64
- Registrado em: Dom Ago 15, 2010 18:29
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Bacharelado em Matematica
- Andamento: cursando
por cristina » Dom Ago 22, 2010 10:48
Obrigada pela a ajuda
Não tenho a resposta, pois é aberto, mas depois te digo se esta certo.
-
cristina
- Usuário Parceiro

-
- Mensagens: 82
- Registrado em: Qua Set 02, 2009 17:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura/ matematica
- Andamento: cursando
Voltar para Binômio de Newton
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- TERMO INDEPENDENTE DE X
por hudeslan » Seg Ago 17, 2009 19:28
- 2 Respostas
- 21911 Exibições
- Última mensagem por Molina

Seg Ago 17, 2009 23:18
Estatística
-
- Probabilidade independente
por bianca12 » Qua Out 30, 2013 22:06
- 0 Respostas
- 1266 Exibições
- Última mensagem por bianca12

Qua Out 30, 2013 22:06
Probabilidade
-
- acerto independente
por dandara » Dom Abr 24, 2016 11:28
- 0 Respostas
- 4693 Exibições
- Última mensagem por dandara

Dom Abr 24, 2016 11:28
Probabilidade
-
- Determinar se é linearmente independente
por Razoli » Dom Set 14, 2014 20:36
- 1 Respostas
- 1756 Exibições
- Última mensagem por e8group

Seg Set 15, 2014 09:47
Álgebra Linear
-
- Probabilidade Condicionada/ Acontecimento Independente
por Mcatia » Qua Nov 10, 2010 16:25
- 5 Respostas
- 4213 Exibições
- Última mensagem por fraol

Ter Abr 17, 2012 22:18
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.