• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Uma questao complicada pra mim ;/

Uma questao complicada pra mim ;/

Mensagempor hian » Dom Nov 14, 2010 16:50

(UF Santa Maria-RS) Se x = ((6@0))+((6@1))+..+((6@6)) e ((y@1))+((y@2))+..+((y@y))=225 então x/y vale:

a.5
b.6
c.8
d.7
e.9

esses @ é que eles tao em cima do outro por exemplo ((6@0)) = (6)
0

eu ja tentei de varias formas . o professor disse que a certa é a letra C e eu usei varias formulas como (n@k).(n-k/k+1)=(n@k+1)

t(k+1)=(n@k).x^n-k.y^k

e nao chego na alternativa me ajuda por favor T.T
hian
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Nov 14, 2010 15:46
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Uma questao complicada pra mim ;/

Mensagempor VtinxD » Seg Nov 15, 2010 01:33

Pelo que me parece o enunciado esta errado , deveria ser 255 ao invés de 225.Porque:
*\sum_{p=0}^{n}\left(\frac{n}{p} \right)={2}^{n}.Sendo então x={2}^{6} e {2}^{y}-1=255(perceba que esta faltando o \left(\frac{y}{0} \right) que vale sempre 1).Caso fosse 225 ,seria necessário a aplicação de logaritmo e o que provavelmente tornaria y um numero irracional ,que contraria a definição de numero binomial.
Caso esteja com o enunciado correto e ainda esteja com duvida vou postar o resto da minha resolução.
{2}^{y}-1=255 \Rightarrow {2}^{y}={2}^{8} \Rightarrow y=8 \Rightarrow y={2}^{3}
\frac{{2}^{6}}{{2}^{3}}={2}^{6-3}={2}^{3}
\frac{x}{y}=\frac{{2}^{6}}{{2}^{3}}={2}^{6-3}={2}^{3}
Espero ter ajudado.


*Não existe essa barra mas é o único jeito que sabei para escrever um binômio.
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando


Voltar para Binômio de Newton

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}