por cardosor23 » Qua Mai 16, 2012 19:55
Olá,
Tenho um exercício que me diz que o numero de crianças que vão a um parque de diversões por hora, processa-se de acordo com uma distribuição de Poisson.
1hora = 15 crianças = probabilidade 0.031.
1hora = 16 crianças = probabilidade 0.062.
Como é que posso determinar a média de crianças que chegam por hora?
Abraço
-
cardosor23
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Mar 26, 2012 19:26
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Informática
- Andamento: cursando
por Neperiano » Ter Ago 07, 2012 14:19
Olá
Olha só, você sabe que com probabilidade de 31% 15 crianças chegam em 1 hora, e que com 62% 16 crianças, ou seja, você duplicou e aumentou uma criança.
Você deve de alguma forma chegar a probabilidade de 100%.
Não me lembro mais de Poisson, vou dar uma olhada, mas talvez dê para fazer instintivamente, 31 - 15, 62 - 16, 93 - 17
Mais ou menos 17 crianças.
Mas vou estudar.
Att
Sómente os mortos conhecem o fim da guerra
"Platão"
-

Neperiano
- Colaborador Voluntário

-
- Mensagens: 960
- Registrado em: Seg Jun 16, 2008 17:09
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Produção
- Andamento: cursando
Voltar para Estatística
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Distribuição de Poisson] Dúvida sobre Poisson
por eleite » Dom Abr 20, 2014 23:06
- 0 Respostas
- 2626 Exibições
- Última mensagem por eleite

Dom Abr 20, 2014 23:06
Estatística
-
- distribuição de Poisson.
por saseong » Seg Dez 01, 2008 20:10
- 5 Respostas
- 10238 Exibições
- Última mensagem por Sandra Piedade

Dom Dez 28, 2008 17:19
Estatística
-
- Probabilidade (Distribuição Poisson)
por Souo » Sex Out 02, 2020 03:58
- 0 Respostas
- 3600 Exibições
- Última mensagem por Souo

Sex Out 02, 2020 03:58
Probabilidade
-
- Probabilidade (Distribuição Poisson)
por Souo » Sex Out 02, 2020 21:18
- 0 Respostas
- 3789 Exibições
- Última mensagem por Souo

Sex Out 02, 2020 21:18
Probabilidade
-
- Probabilidade (Distribuição Poisson)
por Souo » Sex Out 02, 2020 21:37
- 0 Respostas
- 3813 Exibições
- Última mensagem por Souo

Sex Out 02, 2020 21:37
Probabilidade
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.