• Anúncio Global
    Respostas
    Exibições
    Última mensagem

analise combinatoria probabilidade

analise combinatoria probabilidade

Mensagempor silvia fillet » Seg Abr 30, 2012 13:49

Utilizando um argumento combinatorio mostre que

\left(nk=\left(n-1k-1+\left(n-1k \right) \right) \right)\left(nk=\left(n-1k-1+\left(n-1k \right) \right) \right)

fixe um elemento do conjunto e conte o total de subconjuntos de tamanho k que contem o elemento e o total de subconjuntos de tamnho k que nao o contem.
silvia fillet
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 89
Registrado em: Qua Out 12, 2011 21:07
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matematica
Andamento: formado

Re: analise combinatoria probabilidade

Mensagempor Aparecida » Sáb Mai 05, 2012 00:06

1. Um lote contém 12 itens bons e 8 itens defeituosos. Uma amostra de 5 itens é extraída. Determine o total de amostras contendo exatamente 3 itens bons.
Aparecida
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Dom Out 30, 2011 22:22
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: formado

Re: analise combinatoria probabilidade

Mensagempor Fabiano Vieira » Sáb Mai 05, 2012 11:59

Aparecida escreveu:1. Um lote contém 12 itens bons e 8 itens defeituosos. Uma amostra de 5 itens é extraída. Determine o total de amostras contendo exatamente 3 itens bons.


Aparecida,

para melhor organização do fórum, quando for postar uma questão abra um novo tópico.

\frac{12!}{3!(12-3)!}=220

\frac{8!}{2!(8-2)!}=28

220+28=248
Fabiano Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Abr 16, 2012 23:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistema de Informação
Andamento: cursando

Re: analise combinatoria probabilidade

Mensagempor psdias » Sáb Mai 05, 2012 22:00

Olá, Fabiano !

Fiz as mesmas contas que você, chegando a 220 e 28, mas
eu MULTIPLIQUEI esses valores, chegando a 6.160.

Não entendi porque você somou os dois resultados. Pode explicar, por favor ?

Obs.: No seguinte link, há um problema semelhante, apenas mudando a quantidade de peças boas e defeituosas, e o tamanho da amostra:

http://www.ebah.com.br/content/ABAAABql ... mbinatoria

Paulo
psdias
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Ter Nov 22, 2011 18:10
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: LICENCIATURA EM MATEMÁTICA
Andamento: formado

Re: analise combinatoria probabilidade

Mensagempor Fabiano Vieira » Dom Mai 06, 2012 01:21

psdias escreveu:Olá, Fabiano !

Fiz as mesmas contas que você, chegando a 220 e 28, mas
eu MULTIPLIQUEI esses valores, chegando a 6.160.

Não entendi porque você somou os dois resultados. Pode explicar, por favor ?


Olhei o exercício do link, é igual. Foi um erro meu nessa questão.
Fabiano Vieira
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Seg Abr 16, 2012 23:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistema de Informação
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}