• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Notação Calculo Combinatorio

Notação Calculo Combinatorio

Mensagempor joaofonseca » Qua Jan 11, 2012 20:36

No calculo combinatorio existe o que se chama de arranjo simples (sem repetição)
A notação é:
_{ }^{n}\textrm{A}_{p}= \frac{n!}{(n-p)!}, em que n \geq p.

Depois existe o que se chama de arranjo composto (com repetição).
A notação é:

_{ }^{n}\textrm{A'}_{p}=n^p

Mas julgo que nem sempre o n e o p são o mesmos em ambos os casos.

Exemplo #1:

Quantos números de 3 algarismos se podem formar com os digitos 0 e 1?
Aqui aplica-se um arranjo composto, em que n=2 e p=3.

Exemplo #2:
Numa competição participam 3 jogadores.Só existe prémio para o 1º e 2º lugares. De quantas formas diferentes se podem distribuir os prémios?
Aqui aplica-se um arranjo simples, em que n=3 e p=2.

Porque isto acontece?
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Notação Calculo Combinatorio

Mensagempor Arkanus Darondra » Qua Jan 11, 2012 21:00

Olá joaofonseca,

exemplo#1: Como você mesmo colocou, quando pode haver repetição, usa-se o arranjo composto.
Logo, como o exercício não diz que os números devem ser formados por algarismos distintos, e nem poderia (ele dá 2 algarismos e pede números compostos por 3), usa-se a o arranjo composto.
Obs: Creio que neste caso, como o número não pode começar por 0, teremos 4 números (1 . 2 . 2 e não 2^3).

exemplo#2: Como uma pessoa não pode ocupar dois lugares no pódio ao mesmo tempo, usa-se a arranjo simples.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Notação Calculo Combinatorio

Mensagempor joaofonseca » Qua Jan 11, 2012 21:30

No 1º exemplo eu estava-me a referir em numeração binária, do tipo 010,100 ou 001.
O porque de aplicar um arranjo simples ou arranjo composto eu sei. A questão é porque o valor de n e p não terem o mesmo valor apesar de nas notações respetivas estarem nas mesmas posições.
Existem casos em que n e p têm o mesmos valores, quer se trate de um arranjo simples, ou arranjo composto.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Notação Calculo Combinatorio

Mensagempor Arkanus Darondra » Qua Jan 11, 2012 21:49

joaofonseca escreveu:No 1º exemplo eu estava-me a referir em numeração binária, do tipo 010,100 ou 001.

Certo. Na minha observação eu apenas supus, afinal o enunciado não especifica (Arranjo de n p a p)

joaofonseca escreveu:A questão é porque o valor de n e p não terem o mesmo valor apesar de nas notações respetivas estarem nas mesmas posições.
Existem casos em que n e p têm o mesmos valores, quer se trate de um arranjo simples, ou arranjo composto.

Imagine que n é um valor que você vai "arranjar" e p é algo fixo.

No exemplo#1 o fato de ter que formar números de 3 algarismos é algo fixo, o que será "arranjado" é a ordem dos algarismos dados.
Então, n = 2 e p = 3
No exemplo#2 o fato que existir premiação para os 1º e 2º colocados na competição é fixo, o que será "arranjado" é a forma de como os prêmios serão distribuídos entre os jogadores.
Então n = 3 e p = 2
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D


cron